Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 1
207
Views
3
CrossRef citations to date
0
Altmetric
Articles

Flow friction and thermal performance of dimple imprinted based solar air-heater: A numerical study

&
Pages 35-53 | Received 10 Apr 2022, Accepted 18 Jul 2022, Published online: 03 Aug 2022

References

  • S. Panda and R. Kumar, “A review on effect of various artificial roughness on heat transfer enhancement in a channel flow,” J. Therm. Eng., vol. 7, no. 5, pp. 1267–1301, 2021. DOI: 10.18186/thermal.978149.
  • S. Panda and R. Kumar, “A review on heat transfer enhancement of solar air heater using various artificial roughed geometries,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 89, no. 1, pp. 92–133, 2021.
  • N. S. Yacob, H. Mohamed, and A. H. Shamsuddin, “Investigation of palm oil wastes characteristics for co-firing with coal,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 23, no. 1, pp. 34–42, 2021.
  • H. Lubis, “Renewable energy of rice husk for reducing fossil energy in Indonesia,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 1, no. 1, pp. 17–22, 2018.
  • M. A. Khattak, “Global energy security and European Union: A review,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 11, no. 1, pp. 64–81, 2018.
  • B. Prasad and J. Saini, “Effect of artificial roughness on heat transfer and friction factor in a solar air heater,” Sol. Energy, vol. 41, no. 6, pp. 555–560, 1988. DOI: 10.1016/0038-092X(88)90058-8.
  • S. K. Verma and B. N. Prasad, “Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters,” Renew. Energy, vol. 20, no. 1, pp. 19–36, 2000. DOI: 10.1016/S0960-1481(99)00081-6.
  • K. Prasad and S. C. Mullick, “Heat transfer characteristics of a solar air heater used for drying purposes,” Appl. Energy, vol. 13, no. 2, pp. 83–93, 1983. DOI: 10.1016/0306-2619(83)90001-6.
  • G. Tanda, “Performance of solar air heater ducts with different types of ribs on the absorber plate,” Energy, vol. 36, no. 11, pp. 6651–6660, 2011. DOI: 10.1016/j.energy.2011.08.043.
  • A. Singh Yadav and J. L. Bhagoria, “Numerical investigation of flow through an artificially roughened solar air heater,” Int. J. Ambient Energy, vol. 36, no. 2, pp. 87–100, 2015. DOI: 10.1080/01430750.2013.823107.
  • A. S. Yadav and J. L. Bhagoria, “A numerical investigation of square sectioned transverse rib roughened solar air heater,” Int. J. Therm. Sci., vol. 79, pp. 111–131, 2014. DOI: 10.1016/j.ijthermalsci.2014.01.008.
  • A. S. Yadav and J. L. Bhagoria, “A numerical investigation of turbulent flows through an artificially roughened solar air heater,” Numer. Heat Transf. Part A Appl., vol. 65, no. 7, pp. 679–698, 2014. DOI: 10.1080/10407782.2013.846187.
  • K. R. Aharwal, B. K. Gandhi, and J. S. Saini, “Heat transfer and friction characteristics of solar air heater ducts having integral inclined discrete ribs on absorber plate,” Int. J. Heat Mass Transf., vol. 52, no. 25–26, pp. 5970–5977, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.05.032.
  • R. Karwa, S. C. Solanki, and J. S. Saini, “Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates,” Energy, vol. 26, no. 2, pp. 161–176, 2001. DOI: 10.1016/S0360-5442(00)00062-1.
  • A. M. E. Momin, J. Saini, and S. Solanki, “Heat transfer and friction in solar air heater duct with V-Shaped rib roughness on an absorber plate,” Int. J. Heat Mass Transf., vol. 45, no. 16, pp. 3383–3396, 2002. DOI: 10.1016/S0017-9310(02)00046-7.
  • A. Lanjewar, J. L. Bhagoria, and R. M. Sarviya, “Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate,” Energy, vol. 36, no. 7, pp. 4531–4541, 2011. DOI: 10.1016/j.energy.2011.03.054.
  • H. K. Ghritlahre, “Heat transfer and friction factor characteristic investigation of roughened solar air heater using arc-shaped wire rib roughness,” Int. J. Ambient Energy, pp. 1–15, 2021. DOI: 10.1080/01430750.2021.1934115.
  • A. Kumar, “Analysis of heat transfer and fluid flow in different shaped roughness elements on the absorber plate solar air heater duct,” Energy Procedia, vol. 57, pp. 2102–2111, 2014. DOI: 10.1016/j.egypro.2014.10.176.
  • A. R. Jaurker, J. S. Saini, and B. K. Gandhi, “Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness,” Sol. Energy, vol. 80, no. 8, pp. 895–907, 2006. DOI: 10.1016/j.solener.2005.08.006.
  • V. B. Gawande, A. S. Dhoble, D. B. Zodpe, and S. Chamoli, “Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs,” Sol. Energy, vol. 131, pp. 275–295, 2016. DOI: 10.1016/j.solener.2016.02.040.
  • T. Alam and M. H. Kim, “Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs,” Appl. Therm. Eng, vol. 126, pp. 458–469, 2017. DOI: 10.1016/j.applthermaleng.2017.07.181.
  • M. M. Sahu and J. L. Bhagoria, “Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater,” Renew. Energy, vol. 30, no. 13, pp. 2057–2073, 2005. DOI: 10.1016/j.renene.2004.10.016.
  • P. Promvonge, C. Khanoknaiyakarn, S. Kwankaomeng, and C. Thianpong, “Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet,” Int. Commun. Heat Mass. Transf, vol. 38, no. 6, pp. 749–756, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.03.014.
  • S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, “Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators,” Int. Commun. Heat Mass Transf., vol. 50, pp. 34–43, 2014. DOI: 10.1016/j.icheatmasstransfer.2013.11.001.
  • R. P. Saini and J. Verma, “Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters,” Energy, vol. 33, no. 8, pp. 1277–1287, 2008. DOI: 10.1016/j.energy.2008.02.017.
  • M. Sethi, Varun, and N. S. Thakur, “Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate,” Sol. Energy, vol. 86, no. 9, pp. 2852–2861, 2012. DOI: 10.1016/j.solener.2012.06.024.
  • A. Perwez and R. Kumar, “Thermal performance invesigation of the flat and spherical dimple absorber plate solar air heaters,” vol. 193, pp. 309–323, 2019.
  • A. Bhushan, R. Kumar, and A. Perwez, “Experimental investigations of thermal performance for flat and dimpled plate solar air heater under turbulent flow conditions,” Sol. Energy, vol. 231, no. 2021, pp. 664–683, 2022. DOI: 10.1016/j.solener.2021.11.060.
  • S. Yadav, M. Kaushal, Varun, and Siddhartha, “Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate,” Exp. Therm. Fluid Sci., vol. 44, pp. 34–41, 2013. DOI: 10.1016/j.expthermflusci.2012.05.011.
  • M. Fakoor Pakdaman, A. Lashkari, H. Basirat Tabrizi, and R. Hosseini, “Performance evaluation of a natural-convection solar air-heater with a rectangular-finned absorber plate,” Energy Convers. Manag., vol. 52, no. 2, pp. 1215–1225, 2011. DOI: 10.1016/j.enconman.2010.09.017.
  • S. B. Bopche and M. S. Tandale, “Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct,” Int. J. Heat Mass Transf., vol. 52, no. 11–12, pp. 2834–2848, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.09.039.
  • A. Bekele, M. Mishra, and S. Dutta, “Effects of delta-shaped obstacles on the thermal performance of solar air heater,” Adv. Mech. Eng., vol. 2011, pp. 1–10, 2011. DOI: 10.1155/2011/103502.
  • ANSYS FLUENT 12.0, Documentation, ANSYS Inc., pp. 1–2070, 2009.
  • D. Jin, M. Zhang, P. Wang, and S. Xu, “Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate,” Energy, vol. 89, pp. 178–190, 2015. DOI: 10.1016/j.energy.2015.07.069.
  • A. Perwez and R. Kumar, “Heat transfer performance investigation of the spherical dimple heat sink and inclined teardrop dimple heat sink,” Numer. Heat Transf. Part A. Appl., vol. 76, no. 2, pp. 73–86, 2019. DOI: 10.1080/10407782.2019.1612676.
  • Y. Rao, B. Li, and Y. Feng, “Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples,” Exp. Therm. Fluid Sci., vol. 61, no. C, pp. 201–209, 2015. DOI: 10.1016/j.expthermflusci.2014.10.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.