Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 2
145
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical modeling of temperature-dependent effective thermal conductivity of two-phase porous system using square and circular geometries

, &
Pages 102-121 | Received 14 Apr 2022, Accepted 18 Jul 2022, Published online: 09 Aug 2022

References

  • J. C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1, 3rd ed. UK: Oxford University Press, 1904, pp. 435–440.
  • Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys., vol. 33, no. 10, pp. 3125–3131, 1962. DOI: 10.1063/1.1728579.
  • O. Wiener and L. Doppelbrechung, Phys. Z., vol. 5, pp. 332–338, 1904.
  • P. Zehner and E. U. Schlunder, “On the effective heat conductivity in packed beds with flowing fluid at medium and high temperatures,” Chem. Eng. Technol., vol. 42, pp. 933–941, 1970.
  • W. F. Jones and F. Pascal, “Numerical calculations of thermal conductivities of composites - A 3-D model,” Geophysics, vol. 60, no. 4, pp. 1038–1050, 1995. DOI: 10.1190/1.1443832.
  • S. Graham and D. L. McDowell, “Numerical analysis of the transverse thermal conductivity of composites with imperfect interfaces, transactions of the ASME,” J. Heat Transf., vol. 125, no. 3, pp. 389–393, 2003. DOI: 10.1115/1.1561814.
  • F. A. Al-Sulaiman, E. M. A. Mokheimer, and Y. N. Al-Nassar, “Prediction of the thermal conductivity of the constituents of fiber reinforced composite laminates,” J. Heat Mass Transf., vol. 43, no. 2, pp. 117–122, 2006. DOI: 10.1007/s00231-006-0099-5.
  • W. Lu, C. Y. Zhao, and S. A. Tassou, “Thermal analysis on metal-foam filled heat exchangers Part I: Metal-foam filled pipes,” Int. J. Heat Mass Transf., vol. 49, no. 1516, pp. 2751–2761, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.12.012.
  • J. L. Yang, L. J. Yang, C. Xu, and X. Z. Du, “Numerical analysis on thermal behavior of solidliquid phase change within copper foam with varying porosity,” Int. J. Heat Mass Transf., vol. 84, pp. 1008–1018, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.088.
  • H. Peng, R. Li, X. Ling, and H. Dong, “Modeling on heat storage performance of compressed air in a packed bed system,” Appl. Energy, vol. 160, pp. 1–9, 2015. DOI: 10.1016/j.apenergy.2015.09.029.
  • R. Wulf et al., “Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams,” Int. J. Therm. Sci., vol. 86, pp. 95–103, 2014. DOI: 10.1016/j.ijthermalsci.2014.06.030.
  • S. S. Bu et al., “On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres,” Nucl. Eng. Des., vol. 270, pp. 21–33, 2014. DOI: 10.1016/j.nucengdes.2014.01.001.
  • J. Yang et al., “Experimental analysis of forced convective heat transfer in novel structured packed beds of particles,” Chem. Eng., vol. 71, pp. 126–137, 2012. DOI: 10.1016/j.ces.2011.12.005.
  • Y. Ge, Z. C. Liu, and W. Liu, “Multi-objective genetic optimization of the heat transfer for tube inserted with porous media,” Int. J. Heat Mass Transf., vol. 101, pp. 981–987, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.118.
  • N. Zheng, P. Liu, F. Shan, Z. Liu, and W. Liu, “Effects of rib arrangements on the flow pattern and heattransfer in an internally ribbed heat exchanger tube,” Int. J. Therm. Sci., vol. 101, pp. 93–105, 2016. DOI: 10.1016/j.ijthermalsci.2015.10.035.
  • J. Yang, J. Q. Wu, L. Zhou, and Q. W. Wang, “Computational study of fluid flow and heat transfer in compositepacked beds of spheres with low tube to particle diameter ratio,” Nucl. Eng. Des., vol. 300, pp. 85–96, 2016. DOI: 10.1016/j.nucengdes.2015.10.030.
  • S. Natsui et al., “Simultaneous threedimensionalanalysisof gas-solid flow in blast furnace by combining discrete element method and computational fluiddynamics,” ISIJ Int., vol. 51, no. 1, pp. 41–50, 2011. DOI: 10.2355/isijinternational.51.41.
  • W. J. Yang, Z. Y. Zhou, and A. B. Yu, “Particle scale studies of heat transfer in a moving bed,” Powder Technol., vol. 281, pp. 99–111, 2015. DOI: 10.1016/j.powtec.2015.04.071.
  • W. Liu, P. Liu, Z. M. Dong, K. Yang, and Z. C. Liu, “A study on the multi-field synergy principle of convective heat and mass transfer enhancement,” Int. J. Heat Mass Transf., vol. 134, pp. 722–734, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.077.
  • Y. Ge, S. C. Wang, Z. C. Liu, and W. Liu, “Optimal shape design of a minichannel heat sink applyingmulti-objective optimization algorithm and three-dimensional numerical method,” Appl. Therm. Eng., vol. 148, pp. 120–128, 2019. DOI: 10.1016/j.applthermaleng.2018.11.038.
  • S. Chidambara Raja, P. Karthikeyan, L. A. Kumaraswamidhas, and M. Ramu, “Effect of primary and secondary parameters on analytical estimation of effective thermal conductivity of two phase materials using unit cell approach,” Heat Mass Transf., vol. 54, no. 5, pp. 1323–1335, 2018. DOI: 10.1007/s00231-017-2214-1.
  • N. Wakao and K. Kato, “Effective thermal conductivity of packed beds,” J. Chem. Eng. Japan, vol. 2, no. 1, pp. 24–33, 1969. DOI: 10.1252/jcej.2.24.
  • S. Chidambara Raja, L. A. Kumaraswamidhas, P. Karthikeyan, and M. Ramu, “Prediction of pressure dependent effective thermal conductivity of two phase materials in high temperature applications-An analytical method using hexagon and octagon models,” Int. J. Therm. Sci., vol. 135, pp. 192–205, 2019. DOI: 10.1016/j.ijthermalsci.2018.08.044.
  • K. S. Reddy and P. Karthikeyan, “Estimation of effective thermal conductivity of two-phase materials using collocated parameter model,” Heat Transf. Eng., vol. 30, no. 12, pp. 998–914, 2009. DOI: 10.1080/01457630902837533.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Series on Computational Methods in Mechanics and Thermal science, Boca Raton: CRC Press, 1980. https://doi.org/10.1201/9781482234213.
  • P. Karthikeyan and K. S. Reddy, “Absolute steady state thermal conductivity measurement of insulation materials using square guarded hot plate apparatus,” J. Energy Heat Mass Transf., vol. 30, pp. 273–286, 2008.
  • F. J. Emerson and E. B. Donald, “Modeling of the effective thermal conductivity and diffusivity of a packed bed with stagnant fluid; I,” J. Heat Mass Transf., vol. 27, no. 3, pp. 399–407, 1984.
  • J. S. M. Botterill, A. G. Salway, and Y. Teoman, “The effective thermal conductivity of high temperature particulate beds-ii, model predictions and the implication of the experimental values; I,” J. Heat Mass Transf., vol. 32, no. 3, pp. 595–609, 1989. DOI: 10.1016/0017-9310(89)90147-6.
  • S. Imura and E. Takegoshi, “Effect of gas pressure on the effective thermal conductivity of packed beds,” Heat Transfer- Jap. Res., vol. 3, pp. 13–26, 1974.
  • T. Fischedick, M. Kind, and B. Dietrich, “High temperature two-phase thermal conductivity of ceramic sponges with stagnant fluid – Experimental results and correlation including thermal radiation,” Int. J. Therm. Sci., vol. 96, pp. 1–11, 2015. DOI: 10.1016/j.ijthermalsci.2015.04.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.