Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 5
264
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Influence of oblique angle variations on the thermo-hydraulic characteristics of the oblique fin heat sink with Al2O3 water nanofluid

ORCID Icon, ORCID Icon & ORCID Icon
Pages 413-432 | Received 14 Sep 2021, Accepted 27 Jul 2022, Published online: 10 Aug 2022

References

  • H. Y. Zhang, Y. C. Mui, and M. Tarin, “Analysis of thermoelectric cooler performance for high power electronic packages,” Appl. Therm. Eng., vol. 30, no. 6–7, pp. 561–568, 2010. DOI: 10.1016/j.applthermaleng.2009.10.020.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Dev. Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • W. Qu and I. Mudawar, “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” Int. J. Heat Mass Transf., vol. 45, no. 12, pp. 2549–2565, 2002. DOI: 10.1016/S0017-9310(01)00337-4.
  • W. Qu and I. Mudawar, “Analysis of three-dimensional heat transfer in micro-channel heat sinks,” Int. J. Heat Mass Transf., vol. 45, no. 19, pp. 3973–3985, 2002. DOI: 10.1016/S0017-9310(02)00101-1.
  • S. V. Garimella and C. B. Sobhan, “Transport in microchannels - A critical review,” Annu. Rev. Heat Transf., vol. 13, no. 13, pp. 1–50, 2003. DOI: 10.1615/AnnualRevHeatTransfer.v13.30.
  • S. G. Kandlikar, S. Garimella, D. Li, S. Colin, and M. King, Heat Transfer Fluid Flow Minichannels Microchannels, 2014. DOI: 10.1016/C2011-0-07521-X.
  • M. E. Steinke and S. G. Kandlikar, “Single-phase heat transfer enhancement techniques in microchannel and minichannel flows,” presented at the Proc. 2nd Int. Conf. Microchannels Minichannels, Rochester, New York, USA, 2004. DOI: 10.1115/ICMM2004-2328.
  • Y. L. Zhai, G. D. Xia, X. F. Liu, and Y. F. Li, “Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis,” Int. J. Heat Mass Transf., vol. 68, pp. 224–233, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.08.086.
  • H. Ghaedamini, P. S. Lee, and C. J. Teo, “Developing forced convection in converging-diverging microchannels,” Int. J. Heat Mass Transf., vol. 65, pp. 491–499, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.036.
  • P. K. Singh, H. F. S. Tan, C. J. Teo, and P. S. Lee, “Flow and heat transfer in branched wavy microchannels,” Proceedings of the ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, Hong Kong, China. December 11–14, V001T11A002. ASME, 2013. DOI: 10.1115/MNHMT2013-22058.
  • Y. Fan, P. S. Lee, P. K. Singh, and Y. J. Lee, “Planar oblique fin microchannel structure,” in Thermal Transport in Oblique Finned Micro/Minichannels. SpringerBriefs in Applied Sciences and Technology. Springer, Cham, 2015, pp. 5–84. DOI: 10.1007/978-3-319-09647-6_2.
  • Y. J. Lee, P. S. Lee, and S. K. Chou, “Enhanced thermal transport in microchannel using oblique fins,” J. Heat Transf., vol. 134, no. 10, pp. 101901, 2012. DOI: 10.1115/1.4006843.
  • O. B. Kanargi, P. S. Lee, and C. Yap, “A numerical and experimental investigation of heat transfer and fluid flow characteristics of a cross-connected alternating converging–diverging channel heat sink,” Int. J. Heat Mass Transf., vol. 106, pp. 449–464, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.057.
  • R. Kumar, B. Tiwary, and P. K. Singh, “Influence of secondary pass location on thermo-fluidic characteristic on the novel air-cooled branched wavy minichannel heat sink: A comprehensive numerical and experimental analysis,” Appl. Therm. Eng., vol. 182, pp. 115994, 2021. DOI: 10.1016/j.applthermaleng.2020.115994.
  • Y. Alihosseini, M. Zabetian Targhi, and M. M. Heyhat, “Thermo-hydraulic performance of wavy microchannel heat sink with oblique grooved finned,” Appl. Therm. Eng., vol. 189, pp. 116719, 2021. DOI: 10.1016/j.applthermaleng.2021.116719.
  • M. Khoshvaght-Aliabadi, A. Abbaszadeh, and M. M. Rashidi, “Comparison of Co- and counter-current modes of operation for wavy minichannel heat sinks (WMHSs),” Int. J. Therm. Sci., vol. 171, pp. 107189, 2022. DOI: 10.1016/j.ijthermalsci.2021.107189.
  • J. A. Choi and S. U. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” 1995 International mechanical engineering congress and exhibition, San Francisco, CA, United States, Nov. 12–17.
  • M. U. Sajid and H. M. Ali, “Recent advances in application of nanofluids in heat transfer devices: A critical review,” Renew. Sustain. Energy Rev., vol. 103, pp. 556–592, 2019. DOI: 10.1016/j.rser.2018.12.057.
  • S. M. Sohel Murshed and C. A. Nieto de Castro, “A critical review of traditional and emerging techniques and fluids for electronics cooling,” Renew. Sustain. Energy Rev., vol. 78, pp. 821–833, 2017. DOI: 10.1016/j.rser.2017.04.112.
  • I. A. Ghani, N. Kamaruzaman, and N. A. C. Sidik, “Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs,” Int. J. Heat Mass Transf., vol. 108, part B, pp. 1969–1981, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.046.
  • B. Tiwary, R. Kumar, P. S. Lee, and P. K. Singh, “Numerical investigation of thermal and hydraulic performance in novel oblique geometry using nanofluid,” Numer. Heat Transf. Part A Appl., vol. 76, pp. 533–551, 2019. DOI: 10.1080/10407782.2019.1642076.
  • M. Khoshvaght-Aliabadi, E. Ahmadian, and O. Sartipzadeh, “Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS),” Int. Commun. Heat Mass Transf., vol. 81, pp. 19–27, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.009.
  • M. Khoshvaght-Aliabadi, O. Sartipzadeh, S. Pazdar, and M. Sahamiyan, “Experimental and parametric studies on a miniature heat sink with offset-strip pins and Al2O3/water nanofluids,” Appl. Therm. Eng., vol. 111, pp. 1342–1352, 2017. DOI: 10.1016/j.applthermaleng.2016.10.035.
  • W. T. Yan, C. Li, and W. B. Ye, “Numerical investigation of hydrodynamic and heat transfer performances of nanofluids in a fractal microchannel heat sink,” Heat Transf. - Asian Res., vol. 48, no. 6, pp. 2329–2349, 2019. DOI: 10.1002/htj.21494.
  • S. M. Hassani, M. Khoshvaght-Aliabadi, and S. H. Mazloumi, “Influence of chevron fin interruption on thermo-fluidic transport characteristics of nanofluid-cooled electronic heat sink,” Chem. Eng. Sci., vol. 191, pp. 436–447, 2018. DOI: 10.1016/j.ces.2018.07.010.
  • M. Khoshvaght-Aliabadi, S. M. Hassani, and S. H. Mazloumi, “Performance enhancement of straight and wavy miniature heat sinks using pin-fin interruptions and nanofluids,” Chem. Eng. Process. Process. Intensif., vol. 122, pp. 90–108, 2017. DOI: 10.1016/j.cep.2017.10.002.
  • J. Mohammadpour, A. Lee, M. Mozafari, M. R. Zargarabadi, and A. S. Mujumdar, “Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian–Lagrangian models,” Int. J. Therm. Sci., vol. 161, pp. 106705, 2021. DOI: 10.1016/j.ijthermalsci.2020.106705.
  • M. Saeed and M. H. Kim, “Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks,” Int. J. Heat Mass Transf., vol. 161, pp. 106705, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.075.
  • A. M. Ali, A. Rona, H. T. Kadhim, M. Angelino, and S. Gao, “Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid,” Appl. Therm. Eng., vol. 191, pp. 116817, 2021. DOI: 10.1016/j.applthermaleng.2021.116817.
  • B. Kanargi, J. M. S. Tan, P. S. Lee, and C. Yap, “A tapered inlet/outlet flow manifold for planar, air-cooled oblique-finned heat sink,” Appl. Therm. Eng., vol. 174, pp. 115250, 2020. DOI: 10.1016/j.applthermaleng.2020.115250.
  • B. Kanargi, P. S. Lee, and C. Yap, “A numerical and experimental investigation of heat transfer and fluid flow characteristics of an air-cooled oblique-finned heat sink,” Int. J. Heat Mass Transf., vol. 116, pp. 393–416, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.013.
  • N. Mou, Y. J. Lee, P. S. Lee, P. K. Singh, and S. A. Khan, “Investigations on the influence of flow migration on flow and heat transfer in oblique fin microchannel array,” J. Heat Transf., vol. 138, no. 10, pp. 102403, 2016. DOI: 10.1115/1.4033540.
  • M. Law, O. B. Kanargi, and P. S. Lee, “Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels,” Int. J. Heat Mass Transf., vol. 100, pp. 646–660, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.077.
  • M. Law and P. S. Lee, “Effects of varying secondary channel widths on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels,” Int. J. Heat Mass Transf., vol. 101, pp. 313–326, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.055.
  • Y. J. Lee, P. K. Singh, and P. S. Lee, “Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study,” Int. J. Heat Mass Transf., vol. 81, pp. 325–336, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.018.
  • I. A. Ghani, N. A. C. Sidik, and N. Kamaruzaman, “Hydrothermal performance of microchannel heat sink: The effect of channel design,” Int. J. Heat Mass Transf., vol. 107, pp. 21–44, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.031.
  • B. Tiwary, R. Kumar, and P. K. Singh, “Heat transfer enhancement in oblique finned channel,” Lect. Notes Mech. Eng., pp. 157–167, 2019. DOI: 10.1007/978-981-13-6416-7_15.
  • A. Inc., ANSYS Fluent Theory Guide v17.1, ANSYS 17.1 Doc, 2016.
  • B. Tiwary, R. Kumar, and P. K. Singh, “Thermofluidic characteristic of a nanofluid-cooled oblique fin heat sink: An experimental and numerical investigation,” Int. J. Therm. Sci., vol. 171, pp. 107214, 2022. DOI: 10.1016/j.ijthermalsci.2021.107214.
  • V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” J. Sci. Comput., vol. 7, pp. 35–61, 1992. DOI: 10.1007/BF01060210.
  • O. Hamilton and R. L. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962.
  • P. K. Singh, P. V. Harikrishna, T. Sundararajan, and S. K. Das, “Experimental and numerical investigation into the hydrodynamics of nanofluids in microchannels,” Exp. Therm. Fluid Sci., vol. 42, pp. 174–186, 2012. DOI: 10.1016/j.expthermflusci.2012.05.004.
  • P. K. Singh, K. B. Anoop, T. Sundararajan, and S. K. Das, “Entropy generation due to flow and heat transfer in nanofluids,” Int. J. Heat Mass Transf., vol. 53, pp. 4757–4767, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.016.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • N. C. DeJong and A. M. Jacobi, “Flow, heat transfer, and pressure drop in the near-wall region of louvered-fin arrays,” Exp. Therm. Fluid Sci., vol. 27, no. 3, pp. 237–250, 2003. DOI: 10.1016/S0894-1777(02)00224-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.