Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
183
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Application of Corcione correlation in a nanofluid flow on a bidirectional stretching surface with Cattaneo–Christov heat flux and heat generation/absorption

ORCID Icon, , , &
Pages 569-585 | Received 11 Oct 2022, Accepted 28 Oct 2022, Published online: 18 Nov 2022

References

  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Developments Appl. Non-Newtonian Flows, vol. 66, pp. 99–105, 1995.
  • Z. Said et al., “Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids,” Phys. Rep., vol. 946, pp. 1–94, 2022. DOI: 10.1016/j.physrep.2021.07.002.
  • I. Ullah, “Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles,” Int. Commun. Heat Mass Transfer, vol. 132, pp. 105920, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105920.
  • M. I. Asjad, M. Zahid, Y. M. Chu, and D. Baleanu, “Prabhakar fractional derivative and its applications in the transport phenomena containing nanoparticles,” Therm. Sci., vol. 25, no. 2, pp. 411–416, 2021. DOI: 10.2298/TSCI21S2411A.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 50, no. 910, pp. 2002–2018, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • R. S. Varun Kumar, P. G. Dhananjaya, R. N. Kumar, R. J. P. Gowda, and C. Prasannakumara, “Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 23, no. 1, pp. 12–19, 2022. DOI: 10.1080/15502287.2021.1900451.
  • S. E. Ghasemi, S. Mohsenian, S. Gouran, and A. Zolfagharian, “A novel spectral relaxation approach for nanofluid flow past a stretching surface in presence of magnetic field and nonlinear radiation,” Res. Phys., vol. 32, pp. 105141, 2022. DOI: 10.1016/j.rinp.2021.105141.
  • I. Siddique, M. Nadeem, J. Awrejcewicz, and W. Pawlowski, “Soret and Dufour effects on unsteady MHD second-grade nanofluid flow across an exponentially stretching surface,” Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022. DOI: 10.1038/s41598-022-16173-8.
  • H. U. Rasheed, W. Khan, I. Khan, N. Alshammari, and N. Hamadneh, “Numerical computation of 3D Brownian motion of thin film nanofluid flow of convective heat transfer over a stretchable rotating surface,” Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022. DOI: 10.1038/s41598-022-06622-9.
  • A. Dawar et al., “Significance of Lorentz forces on Jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: A homotopy analysis approach,” J. Comput. Des. Eng., vol. 9, no. 2, pp. 564–582, 2022. DOI: 10.1093/jcde/qwac019.
  • S. Elattar et al., “Computational assessment of hybrid nanofluid flow with the influence of hall current and chemical reaction over a slender stretching surface,” Alex. Eng. J., vol. 61, no. 12, pp. 10319–10331, 2022. DOI: 10.1016/j.aej.2022.03.054.
  • H. Waqas, U. Farooq, T. Muhammad, and U. Manzoor, “Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles,” Alex. Eng. J., vol. 61, no. 5, pp. 3665–3672, 2022. DOI: 10.1016/j.aej.2021.09.010.
  • M. Sarfraz and M. Khan, “Significance of ethylene glycol-based CNT Homann nanofluid flow over a biaxially stretching surface,” Waves Random Complex Media, pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2075048.
  • N. Abbas, K. U. Rehman, W. Shatanawi, and M. Y. Malik, “Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip,” Int. Commun. Heat Mass Transfer, vol. 135, pp. 106107, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106107.
  • H. Alotaibi and M. Ramzan, “Comparative study of hybrid and nanofluid flows over an exponentially stretched curved surface with modified Fourier law and dust particles,” Waves Random Complex Media, vol. 32, no. 6, pp. 3053–3073, 2022. DOI: 10.1080/17455030.2022.2049925.
  • P. K. Dadheech, P. Agrawal, A. Sharma, K. S. Nisar, and S. D. Purohit, “Marangoni convection flow of γ–Al2O3 nanofluids past a porous stretching surface with thermal radiation effect in the presence of an inclined magnetic field,” Heat Trans., vol. 51, no. 1, pp. 534–550, 2022. DOI: 10.1002/htj.22318.
  • S. Manjunatha, V. Puneeth, B. J. Gireesha, and A. Chamkha, “Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet,” J. Appl. Comput. Mech., vol. 8, no. 4, pp. 1279–1286, 2022.
  • T. Thumma, N. A. Ahammad, K. Swain, I. L. Animasauan, and S. R. Mishra, “Increasing effects of Coriolis force on the cupric oxide and silver nanoparticles based nanofluid flow when thermal radiation and heat source/sink are significant,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2032471.
  • R. Puneet, N. Srikantha, T. Muhammad, and G. Gupta, “Computational study of three-dimensional flow and heat transfer of 25 nm Cu–H2O nanoliquid with convective thermal condition and radiative heat flux using modified Buongiorno model,” Case Stud. Therm. Eng., vol. 27, pp. 101340, 2021.
  • R. Kumar, T. Sharma, R. Kumar, M. Sheikholeslami, and K. Vajravelu, “Stability analysis of multiple solutions in case of a stretched nanofluid flow obeying Corcione’s correlation: An extended Darcy model,” ZAMM‐J. Appl. Math. Mech./Z. für Angew. Math. und Mech., vol. 101, no. 5, pp. e202000172, 2021.
  • A. S. Dogonchi, A. J. Chamkha, M. Hashemi-Tilehnoee, S. M. Seyyedi, and D. D. Ganji Rizwan-Ul-Haq, “Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source,” J. Cent. South Univ., vol. 26, no. 5, pp. 1161–1171, 2019. DOI: 10.1007/s11771-019-4078-7.
  • J. B. J. Fourier and G. Darboux, “Théorie analytique de la chaleur,” Paris: Didot, vol. 504, pp. 582–622, 1822.
  • C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Univ. Modena, vol. 3, pp. 83–101, 1948.
  • C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech. Res. Commun., vol. 36, no. 4, pp. 481–486, 2009. DOI: 10.1016/j.mechrescom.2008.11.003.
  • M. Imtiaz, F. Mabood, T. Hayat, and A. Alsaedi, “Impact of non-Fourier heat flux in bidirectional flow of carbon nanotubes over a stretching sheet with variable thickness,” Chin. J. Phys., vol. 77, pp. 1587–1597, 2022. DOI: 10.1016/j.cjph.2021.10.024.
  • F. Wang et al, “Bidirectional stretching features on the flow and heat transport of Burgers nanofluid subject to modified heat and mass fluxes,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2055203.
  • M. Ramzan et al., “Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christov heat flux toward the stretching surface,” PLoS One, vol. 17, no. 4, pp. e0264208, 2022. DOI: 10.1371/journal.pone.0264208.
  • A. A. Ebrahem et al., “Analysis of the MHD partially ionized GO-Ag/water and GO-Ag/kerosene oil hybrid nanofluids flow over a stretching surface with Cattaneo–Christov double diffusion model: A comparative study,” Int. Commun. Heat Mass Transfer, vol. 136, pp. 106205, 2022.
  • B. Mandal, K. Bhattacharyya, I. Pop, S. Rajput, and A. K. Pandey, “MHD boundary layer flow of couple-stress fluid over a bidirectional moving surface with non-Fourier heat flux,” J. Interdiscip. Math., vol. 25, no. 6, pp. 1551–1569, 2022. DOI: 10.1080/09720502.2020.1864938.
  • B. Ali, T. Thumma, D. Habib, N. Salamat, and S. Riaz, “Finite element analysis on transient MHD 3D rotating flow of Maxwell and tangent hyperbolic nanofluid past a bidirectional stretching sheet with Cattaneo Christov heat flux model,” Therm. Sci. Eng. Prog., vol. 28, pp. 101089, 2022. DOI: 10.1016/j.tsep.2021.101089.
  • M. Ramzan et al., “Effects of Soret and Dufour numbers on the three-dimensional MHD flow of micropolar fluid containing gyrotactic microorganisms over a bi-directional stretching sheet with Cattaneo-Christov heat and mass flux model,” J. Heat Transfer, vol. 144, no. 10, 2022. DOI: 10.1115/1.4054989.
  • I. Ahmad et al., “Entropy analysis in bidirectional hybrid nanofluid containing nanospheres with variable thermal activity,” J. Nanomater., vol. 2022, pp. 1–15, 2022. DOI: 10.1155/2022/1915185.
  • R. Bag and P. K. Kundu, “Radiative nanofluidic transport over bidirectional stretching sheet with multiple convective conditions and heat source/sink,” Partial Differ. Equ. Appl. Math., vol. 5, pp. 100358, 2022. DOI: 10.1016/j.padiff.2022.100358.
  • I. Ahmad, M. Faisal, K. Loganathan, M. Z. Kiyani, and N. Namgyel, “Nonlinear mixed convective bidirectional dynamics of double stratified radiative Oldroyd-B nanofluid flow with heat source/sink and higher-order chemical reaction,” Math. Probl. Eng., vol. 2022, pp. 1–16, 2022. DOI: 10.1155/2022/9732083.
  • M. Ahmad et al., “Forced convection three-dimensional Maxwell nanofluid flow due to bidirectional movement of sheet with zero mass flux,” Int. Commun. Heat Mass Transfer, vol. 135, pp. 106050, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106050.
  • I. Ahmad, M. Faisal, and T. Javed, “Unsteady flow of Walters-B magneto-nanofluid over a bidirectional stretching surface in a porous medium with heat generation,” Spec. Top. Rev. Porous Media, vol. 12, no. 3, pp. 49–70, 2021. DOI: 10.1615/SpecialTopicsRevPorousMedia.2020034320.
  • S. Manjunatha, V. Puneeth, A. K. Baby, and C. S. Vishalakshi, “Examination of thermal and velocity slip effects on the flow of blood suspended with aluminum alloys over a bi-directional stretching sheet: The ternary nanofluid model,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2056260.
  • M. Ramzan and F. Yousaf, “Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating,” AIP Adv., vol. 5, no. 5, pp. 057132, 2015. DOI: 10.1063/1.4921312.
  • S. G. Kumar et al., “Three-dimensional magnetized slip flow of Carreau non-Newtonian fluid flow through conduction and radiative chemical reaction,” Indian J. Phys., vol. 96, no. 2, pp. 491–501, 2022. DOI: 10.1007/s12648-020-01993-z.
  • N. Acharya, S. Maity, and P. K. Kundu, “Differential transformed approach of unsteady chemically reactive nanofluid flow over a bidirectional stretched surface in presence of magnetic field,” Heat Transfer, vol. 49, no. 6, pp. 3917–3942, 2020. DOI: 10.1002/htj.21815.
  • A. Saeed et al., “Darcy-Forchheimer hybrid nanofluid flow over a stretching curved surface with heat and mass transfer,” PLoS One, vol. 16, no. 5, pp. e0249434, 2021. DOI: 10.1371/journal.pone.0249434.
  • U. M. Zahid, Y. Akbar, and F. M. Abbasi, “Entropy generation analysis for peristaltically driven flow of hybrid nanofluid,” Chin. J. Phys., vol. 67, pp. 330–348, 2020. DOI: 10.1016/j.cjph.2020.07.009.
  • S. M. Peyghambarzadeh, S. H. Hashemabadi, S. M. Hoseini, and M. S. Jamnani, “Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators,” Int. Commun. Heat Mass Transfer, vol. 38, no. 9, pp. 1283–1290, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.07.001.
  • A. D. Zadeh and D. Toghraie, “Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions,” J. Therm. Anal. Calorim., vol. 131, no. 2, pp. 1449–1461, 2018. DOI: 10.1007/s10973-017-6696-3.
  • S. Qayyum, “Dynamics of Marangoni convection in hybrid nanofluid flow submerged in ethylene glycol and water base fluids,” Int. Commun. Heat Mass Transfer, vol. 119, pp. 104962, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104962.
  • M. Corcione, M. Cianfrini, and A. Quintino, “Optimization of laminar pipe flow using nanoparticle liquid suspensions for cooling applications,” Appl. Therm. Eng., vol. 50, no. 1, pp. 857–867, 2013. DOI: 10.1016/j.applthermaleng.2012.07.029.
  • W. Owhaib and W. Al-Kouz, “Three-dimensional numerical analysis of flow and heat transfer of bi-directional stretched nanofluid film exposed to an exponential heat generation using modified Buongiorno model,” Sci. Rep., vol. 12, no. 1, pp. 1–20, 2022. DOI: 10.1038/s41598-022-13351-6.
  • W. Ashraf et al., “Impact of freezing temperature (Tfr) of Al2O3 and molecular diameter (H2O) d on thermal enhancement in magnetized and radiative nanofluid with mixed convection,” Sci. Rep., vol. 12, no. 1, pp. 1–13, 2022. DOI: 10.1038/s41598-021-04587-9.
  • U. Nazir, M. Sohail, M. M. Selim, H. Alrabaiah, and P. Kumam, “Finite element simulations of hybrid nano-Carreau Yasuda fluid with hall and ion slip forces over rotating heated porous cone,” Sci. Rep., vol. 11, no. 1, pp. 1–5, 2021. DOI: 10.1038/s41598-021-99116-z.
  • T. Naseem et al., “Numerical exploration of thermal transport in water-based nanoparticles: A computational strategy,” Case Stud. Therm. Eng., vol. 27, pp. 101334, 2021. DOI: 10.1016/j.csite.2021.101334.
  • F. Wang et al., A Galerkin strategy for tri-hybridized mixture in ethylene glycol comprising variable diffusion and thermal conductivity using non-Fourier’s theory. Nanotechnol. Rev., vol. 11, no. 1, pp. 834–845, 2022. DOI: 10.1515/ntrev-2022-0050.
  • E. A. Algehyne et al., “Investigation of thermal performance of Maxwell hybrid nanofluid boundary value problem in vertical porous surface via finite element approach,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022. DOI: 10.1038/s41598-022-06213-8.
  • M. Sohail et al., “Computational exploration for radiative flow of Sutterby nanofluid with variable temperature-dependent thermal conductivity and diffusion coefficient,” Open Phys., vol. 18, no. 1, pp. 1073–1083, 2020. DOI: 10.1515/phys-2020-0216.
  • S. Bilal, M. Sohail, and R. Naz, “Heat transport in the convective Casson fluid flow with homogeneous–heterogeneous reactions in Darcy–Forchheimer medium,” MMMS, vol. 15, no. 6, pp. 1170–1189, 2019. DOI: 10.1108/MMMS-11-2018-0202.
  • M. Sohail et al., “Theoretical and numerical investigation of entropy for the variable thermophysical characteristics of couple stress material: Applications to optimization,” Alex. Eng. J., vol. 59, no. 6, pp. 4365–4375, 2020. DOI: 10.1016/j.aej.2020.07.042.
  • U. Nazir et al., “An inclination in thermal energy using nanoparticles with casson liquid past an expanding porous surface,” Energies, vol. 14, no. 21, pp. 7328, 2021. DOI: 10.3390/en14217328.
  • A. Hafeez and M. Khan, “Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption,” Int. Commun. Heat Mass Transfer, vol. 123, pp. 105179, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105179.
  • A. Hafeez, M. Khan, A. Ahmed, and J. Ahmed, “Features of Cattaneo-Christov double diffusion theory on the flow of non-Newtonian Oldroyd-B nanofluid with Joule heating,” Appl. Nanosci., vol. 12, no. 3, pp. 265–272, 2022. DOI: 10.1007/s13204-020-01600-x.
  • A. Hafeez, M. Khan, and J. Ahmed, “Oldroyd-B fluid flow over a rotating disk subject to Soret–Dufour effects and thermophoresis particle deposition,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 235, no. 13, pp. 2408–2415, 2021. DOI: 10.1177/0954406220946075.
  • A. Ahmed, M. Khan, J. Ahmed, and A. Hafeez, “Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model,” Appl. Math. Mech.-Engl. Ed., vol. 41, no. 8, pp. 1195–1208, 2020. DOI: 10.1007/s10483-020-2632-8.
  • A. Hafeez, M. Khan, J. Ahmed, A. Ahmed, and Z. Iqbal, “Flow of Oldroyd-B fluid over a rotating disk through porous medium with Soret–Dufour effects,” Arab. J. Sci. Eng., vol. 45, no. 7, pp. 5949–5957, 2020. DOI: 10.1007/s13369-020-04575-7.
  • A. Hafeez, M. Khan, A. Ahmed, and J. Ahmed, “Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory,” Appl. Math. Mech.-Engl. Ed., vol. 41, no. 7, pp. 1083–1094, 2020. DOI: 10.1007/s10483-020-2629-9.
  • T. V. Kármán, “Uber laminare und turbulente Reibung,” Z. Angew. Math. Mech., vol. 1, no. 4, pp. 233–252, 1921. DOI: 10.1002/zamm.19210010401.
  • A. Hafeez, M. Khan, and J. Ahmed, “Flow of Oldroyd-B fluid over a rotating disk with Cattaneo–Christov theory for heat and mass fluxes,” Comput. Methods Prog. Biomed., vol. 191, pp. 105374, 2020. DOI: 10.1016/j.cmpb.2020.105374.
  • A. Hafeez, M. Khan, and J. Ahmed, “Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk,” Comput. Methods Prog. Biomed., vol. 191, pp. 105342, 2020. DOI: 10.1016/j.cmpb.2020.105342.
  • M. Khan, A. Hafeez, and J. Ahmed, “Impacts of non-linear radiation and activation energy on the axisymmetric rotating flow of Oldroyd-B fluid,” Phys. A: Stat. Mech. Appl., vol. 580, pp. 124085, 2021. DOI: 10.1016/j.physa.2019.124085.
  • P. D. Ariel, “Generalized three‐dimensional flow due to a stretching sheet,” Z. Angew. Math. Mech., vol. 83, no. 12, pp. 844–852, 2003. DOI: 10.1002/zamm.200310052.
  • P. D. Ariel, “The three-dimensional flow past a stretching sheet and the homotopy perturbation method,” Comput. Math. Appl., vol. 54, no. 78, pp. 920–925, 2007. DOI: 10.1016/j.camwa.2006.12.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.