Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 7
188
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical investigation on microstructured hybrid surface heat transfer characteristics with Marangoni convection effect

ORCID Icon, , & ORCID Icon
Pages 675-694 | Received 02 Sep 2022, Accepted 16 Nov 2022, Published online: 08 Dec 2022

References

  • Y. M. Chu, R. Ali, M. I. Asjad, A. Ahmadian and N. Senu, “Heat transfer flow of Maxwell hybrid nanofluids due to pressure gradient into rectangular region,” Sci. Rep., vol. 10, no. 1, pp. 1–18, 2020. DOI: 10.1038/s41598-020-73174-1.
  • T. Islam, M. N. Alam, M. I. Asjad, N. Parveen and Y. M. Chu, “Heatline visualization of MHD natural convection heat transfer of nanofluid in a prismatic enclosure,” Sci. Rep., vol. 11, no. 1, pp. 1–8, 2021. DOI: 10.1038/s41598-021-89814-z.
  • Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim and J. R. Lee, “Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach,” Fractal Fract., vol. 5, no. 3, p. 119, 2021. DOI: 10.3390/fractalfract5030119.
  • V. Baghel, B. S. Sikarwar and K. Muralidhar, “Modeling of heat transfer through a liquid droplet,” Heat Mass Transfer, vol. 55, no. 5, pp. 1371–1385, 2019. DOI: 10.1007/s00231-018-2520-2.
  • T. C. Hung, T. Y. Shai and S. K. Wang, “A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat,” Energy, vol. 22, no. 7, pp. 661–667, 1997. DOI: 10.1016/S0360-5442(96)00165-X.
  • W. F. Castle, “Air sepration and liquefaction: Recent developments and prospects for the beginning of the new millennium,” Int. J. Refrig., vol. 25, no. 1, pp. 158–172, 2002.
  • A. T. Paxson, J. L. Yagüe, K. K. Gleason and K. K. Varanasi, “Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films,” Adv. Mater., vol. 26, no. 3, pp. 418–423, 2014. DOI: 10.1002/adma.201303065.
  • V. Carey, 1992. Liquid-Vapor Phase-Change Phenomena: An Introduction to the Themophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. Boca Raton, FL: CRC Press.
  • P. Gao and G. Zhou, “Analysis of an evaporation-condensation desalination system in vacuum driven by geothermal energy,” Desal. Water Treat., vol. 43, no. 1–3, pp. 76–83, 2012.
  • I. Korolija, L. Marjanovic-Halburd, Y. Zhang and V. I. Hanby, “Influence of building parameters and HVAC systems coupling on building energy performance,” Energy Build., vol. 43, no. 6, pp. 1247–1253, 2011.
  • S. Zarei, H. R. Talesh Bahrami and H. Saffari, “Effects of geometry and dimension of micro/nano-structures on the heat transfer in dropwise condensation: A theoretical study,” Appl. Therm. Eng., vol. 137, pp. 440–450, 2018. DOI: 10.1016/j.applthermaleng.2018.04.003.
  • E. Schmidt, W. Schurig and W. Sellschopp, “Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform,” Tech. Mech. Thermodynamik, vol. 1, no. 2, pp. 53–63, 1930. DOI: 10.1007/BF02641051.
  • J. W. Rose, “Dropwise condensation theory and experiment: A review,” Proc. Inst. Mech. Eng., vol. 216, no. 2, pp. 115–128, 2002. DOI: 10.1243/09576500260049034.
  • C. W. Lo, Y. C. Chu, M. H. Yen and M. C. Lu, “Enhancing condensation heat transfer on three-dimensional hybrid surfaces,” Joule, vol. 3, no. 11, pp. 2806–2823, 2019. DOI: 10.1016/j.joule.2019.08.005.
  • J. B. Boreyko and C. H. Chen, “Self-propelled dropwise condensate on superhydrophobic surfaces,” Phys. Rev. Lett., vol. 103, no. 18, p. 184501, 2009.
  • A. Eucken, “Energie- und Stoffaustausch an Grenzflächen,” Naturwissenschaften, vol. 25, no. 14, pp. 209–218, 1937. DOI: 10.1007/BF01490886.
  • S. C. Thickett, C. Neto and A. T. Harris, “Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films,” Adv. Mater., vol. 23, no. 32, pp. 3718–3722, 2011. DOI: 10.1002/adma.201100290.
  • E. J. Le Fevre and J. W. Rose, “A theory of heat transfer by dropwise condensation,” in International Heat Transfer Conference Digital Library, Begel House Inc., 2019.
  • A. Phadnis and K. Rykaczewski, “The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces,” Int. J. Heat Mass Transf., vol. 115, pp. 148–158, 2017.
  • C. H. Chen, et al., “Dropwise condensation on superhydrophobic surfaces with two-tier roughness,” Appl. Phys. Lett., vol. 90, no. 17, p. 173108, 2007.
  • H. Cha, et al., “Dropwise condensation on solid hydrophilic surfaces,” Sci. Adv., vol. 6, no. 2, p. eaax0746, 2020.
  • E. Aminian, M. Kamali, E. Vatanjoo and H. Saffari, Theoretical analysis on condensation heat transfer on microstructured hybrid hydrophobic-hydrophilic tube, Heat Mass Transfer, vol. 58, no. 7, pp. 1207–1221, 2022. DOI: 10.1007/s00231-021-03170-2.
  • E. Vatanjoo, E. Aminian, M. Kamali and H. Saffari, “Theoretical analysis on condensation heat transfer on the hydrophobic–hydrophilic hybrid surfaces with the impact of the Marangoni convection,” Proc. Inst. Mech. Eng., pp. 095440892211059, 2022. DOI: 10.1177/09544089221105925.
  • H. R. Talesh Bahrami, S. Zarei and H. Saffari, “The effect of droplet morphology on the heat transfer performance of micro-/nanostructured surfaces in dropwise condensation: A numerical study,” J. Therm. Anal. Calorim., vol. 138, no. 5, pp. 2979–2988, 2019. DOI: 10.1007/s10973-019-08318-1.
  • J. Cheng, A. Vandadi and C. L. Chen, “Condensation heat transfer on two-tier superhydrophobic surfaces,” Appl. Phys. Lett., vol. 101, no. 3, p. 131909, 2012.
  • E. Ölçeroʇlu and M. McCarthy, “Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces,” ACS Appl. Mater. Interfaces, vol. 8, no. 8, pp. 5729–5736, 2016.
  • K. S. Yang, K. H. Lin, C. W. Tu, Y. Z. He and C. C. Wang, “Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces,” Int. J. Heat Mass Transf., vol. 115, no. 5, pp. 2979–2988, 2017.
  • B. Peng, X. Ma, Z. Lan, W. Xu and R. Wen, “Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces,” Int. J. Heat Mass Transf., vol. 83, pp. 27–38, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.069.
  • F. Sotoudeh, R. Kamali, S. M. Mousavi, N. Karimi, B. J. Lee and D. Khojasteh, “Understanding droplet collision with superhydrophobic-hydrophobic–hydrophilic hybrid surfaces,” Colloids Surf. A Physicochem. Eng. Asp., vol. 614, p. 126140, 2021.
  • T. Y. Zhang, L. W. Mou, Y. C. Zhang, J. Y. Zhang, J. Q. Li and L. W. Fan, “Hierarchical microcavity topography for enhancement of water vapor condensation heat transfer by regulating droplet dynamics and droplet size distribution,” Case Stud. Therm. Eng., vol. 24, pp. 100882, 2021. DOI: 10.1016/j.csite.2021.100882.
  • J. D. Smith, et al., “Droplet mobility on lubricant-impregnated surfaces,” Soft Matter, vol. 9, no. 6, pp. 1772–1780, 2013. DOI: 10.1039/C2SM27032C.
  • P. B. Weisensee, Y. Wang, H. Qian, D. Schultz, W. P. King and N. Miljkovic, “Condensate droplet size distribution on lubricant-infused surfaces,” Int. J. Heat Mass Transf., vol. 109, pp. 187–199, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.119.
  • Y. Gu, Y. Ding, Q. Liao, Q. Fu, X. Zhu and H. Wang, “Analysis of convective condensation heat transfer for moist air on a three-dimensional finned tube,” Appl. Therm. Eng., vol. 195, p. 117211, 2021.
  • M. I. Khan, S. Qayyum, Y. M. Chu, N. B. Khan and S. Kadry, “Transportation of Marangoni convection and irregular heat source in entropy optimized dissipative flow,” Int. Commun. Heat Mass Transfer, vol. 120, pp. 105031, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105031.
  • M. Ijaz Khan, et al., “Marangoni convective flow of hybrid nanofluid (MnZnFe2O4-NiZnFe2O4-H2O) with Darcy Forchheimer medium,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3931–3938, 2021. DOI: 10.1016/j.asej.2021.01.028.
  • Y. X. Li, S. Qayyum, M. I. Khan, Y. Elmasry and Y. M. Chu, “Motion of hybrid nanofluid (MnZnFe2O4–NiZnFe2O4–H2O) with homogeneous–heterogeneous reaction: Marangoni convection,” Math. Comput. Simul., vol. 190, pp. 1379–1391, 2021.
  • M. I. Khan, S. Qayyum, Y. M. Chu and S. Kadry, “Numerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energy,” Numer. Methods Partial Differ. Equations, pp. 1–11, 2020. DOI: 10.1002/num.22610.
  • E. Aminian and H. Saffari, “Experimental analysis of dropwise condensation heat transfer on a finned tube: Impact of pitch size,” Proc. Inst. Mech. Eng., vol. 236, no. 4, pp. 752–759, 2022. DOI: 10.1177/09576509211058057.
  • E. Aminian, A. Zolfaghari and H. Saffari, “Numerical investigation on entropy generation in the dropwise condensation inside an inclined pipe,” Heat Trans., vol. 51, no. 1, pp. 551–577, 2022. DOI: 10.1002/htj.22319.
  • A. Umur and P. Griffith, “Mechanism of dropwise condensation,” J. Heat Transfer, vol. 87 1965.
  • R. W. Schrage, A Theoretical Study of Interphase Mass Transfer. New York, NY: Columbia University Press, 1953.
  • L. R. Glicksman and A. W. Hunt, “Numerical simulation of dropwise condensation,” Int. J. Heat Mass Transf., vol. 15, no. 11, pp. 2251–2269, 1972. DOI: 10.1016/0017-9310(72)90046-4.
  • N. Miljkovic, R. Enright and E. N. Wang, “Modeling and optimization of superhydrophobic condensation,” J. Heat Transfer, vol. 135, no. 11, pp. 111004, 2013.
  • H. Y. Kim, H. J. Lee and B. H. Kang, “Sliding of liquid drops down an inclined solid surface,” J. Colloid Interface Sci., vol. 247, no. 2, pp. 372–380, 2002.
  • S. Lee, H. K. Yoon, K. J. Kim, S. Kim, M. Kennedy and B. J. Zhang, “A dropwise condensation model using a nano-scale, pin structured surface,” Int. J Heat Mass Transf., vol. 60, pp. 664–671, 2013.
  • B. Peng, X. Ma, Z. Lan, W. Xu and R. Wen, “Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect,” Int. J. Heat Mass Transf., vol. 77, pp. 785–794, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.052.
  • J. Xie, Q. She, J. Xu, C. Liang and W. Li, “Mixed dropwise-filmwise condensation heat transfer on biphilic surface,” Int. J. Heat Mass Transf., vol. 150, p. 119273, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.