Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 7
91
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Numerical investigation of convective cooling in a rectangular vented cavity with two inlets and a hot obstacle

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 695-714 | Received 01 Sep 2022, Accepted 18 Nov 2022, Published online: 04 Jan 2023

References

  • I. I. Nosonov and M. A. Sheremet, “Conjugate mixed convection in a rectangular cavity with a local heater,” Int. J. Mech. Sci., vol. 136, pp. 243–251, 2018. DOI: 10.1016/j.ijmecsci.2017.12.049.
  • I. L. Pioro, “Current status of research on heat transfer in forced convection of fluids at supercritical pressures,” Nucl. Eng. Des., vol. 354, pp. 110207, 2019. DOI: 10.1016/j.nucengdes.2019.110207.
  • A. Raji and M. Hasnaoui, “Mixed convection heat transfer in a rectangular cavity ventilated and heated from the side,” Numer. Heat Transf. Part A Appl., vol. 33, no. 5, pp. 533–548, 1998. DOI: 10.1080/10407789808913953.
  • F. Y. Zhao, D. Liu, and G. F. Tang, “Multiple steady fluid flows in a slot-ventilated enclosure,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1295–1308, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.06.005.
  • Z. Hireche, L. Nasseri, and D. E. Ameziani, “Heat transfer analysis of a ventilated room with a porous partition. Lb-MRT simulations,” Eur. Phys. J. Appl. Phys., vol. 91, no. 2, pp. 20904, 2020. DOI: 10.1051/epjap/2020200146.
  • G. E. Ovando-Chacon, S. L. Ovando-Chacon, J. C. Prince-Avelino, and M. A. Romo-Medina, “Numerical study of the heater length effect on the heating of a solid circular obstruction centered in an open cavity,” Eur. J. Mech. B/Fluids, vol. 42, pp. 176–185, 2013. DOI: 10.1016/j.euromechflu.2013.04.006.
  • Y. Lu, H. Fei, H. Yang, Y. Huang, and H. Zhang, “Effect of different cooling mediums on mass injection pre-compression cooling,” Appl. Therm. Eng., vol. 209, pp. 118216, 2022. DOI: 10.1016/j.applthermaleng.2022.118216.
  • F. A. Rodrigues and M. J. de Lemos, “Turbulent flow and heat transfer in a partially filled ventilated cavity using the local thermal non-equilibrium method,” Int. J. Therm. Sci., vol. 164, pp. 106844, 2021. DOI: 10.1016/j.ijthermalsci.2021.106844.
  • F. Selimefendigil and H. F. Öztop, “Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field,” Int. J. Mech. Sci., vol. 152, pp. 185–197, 2019. DOI: 10.1016/j.ijmecsci.2018.12.044.
  • S. M. Saeidi and J. M. Khodadadi, “Forced convection in a square cavity with inlet and outlet ports,” Int. J. Heat Mass Transfer, vol. 49, no. 1112, pp. 1896–1906, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.033.
  • T. Radhakrishnan, A. Verma, C. Balaji and S. Venkateshan, “An experimental and numerical investigation of mixed convection from a heat generating element in a ventilated cavity,” Exp. Therm. Fluid Sci., vol. 32, no. 2, pp. 502–520, 2007. DOI: 10.1016/j.expthermflusci.2007.06.001.
  • O. Prakash and S. N. Singh, “Experimental and numerical study of mixed convection with surface radiation heat transfer in an air-filled ventilated cavity,” Int. J. Therm. Sci., vol. 171, pp. 107169, 2022. DOI: 10.1016/j.ijthermalsci.2021.107169.
  • S. Bansal and D. Chatterjee, “Magneto-convective transport of nanofluid in a vertical lid-driven cavity including a heat-conducting rotating circular cylinder,” Numer. Heat Transf. Part A Appl., vol. 68, no. 4, pp. 411–431, 2015. DOI: 10.1080/10407782.2014.986361.
  • S. Ray and D. Chatterjee, “MHD mixed convection in a lid-driven cavity including heat conducting solid object and corner heaters with joule heating,” Numer. Heat Transf. Part A Appl., vol. 66, no. 5, pp. 530–550, 2014. DOI: 10.1080/10407782.2014.892399.
  • D. Chatterjee, B. Mondal, and P. Halder, “Hydromagnetic mixed convective transport in a vertical lid-driven cavity including a heat conducting rotating circular cylinder,” Numer. Heat Transf. Part A Appl., vol. 65, no. 1, pp. 48–65, 2014. DOI: 10.1080/10407782.2013.812399.
  • D. Chatterjee, P. Halder, S. Mondal, and S. Bhattacharjee, “Magnetoconvective transport in a vertical lid-driven cavity including a heat conducting square cylinder with joule heating,” Numer. Heat Transf. Part A Appl., vol. 64, no. 12, pp. 1050–1071, 2013. DOI: 10.1080/10407782.2013.811955.
  • S. Ray and D. Chatterjee, “MHD mixed convection in a lid-driven cavity including heat conducting circular solid object and corner heaters with Joule heating,” Int. Commun. Heat Mass Transfer, vol. 57, pp. 200–207, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.07.029.
  • D. Chatterjee, S. Gupta, and B. Mondal, “Mixed convective transport in a lid-driven cavity containing a nanofluid and a rotating circular cylinder at the center,” Int. Commun. Heat Mass Transfer, vol. 56, pp. 71–78, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.06.002.
  • A. J. Chamkha, S. H. Hussain, and Q. R. Abd-Amer, “Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder,” Numer. Heat Transf. Part A Appl., vol. 59, no. 1, pp. 58–79, 2011. DOI: 10.1080/10407782.2011.541216.
  • M. M. Rahman et al., “Effects of Reynolds and Prandtl number on mixed convection in a ventilated cavity with a heat-generating solid circular block,” Appl. Math. Model., vol. 36, no. 5, pp. 2056–2066, 2012. DOI: 10.1016/j.apm.2011.08.014.
  • M. M. Rahman, S. Parvin, M. Hasanuzzaman, R. Saidur, and N. A. Rahim, “Effect of heat-generating solid body on mixed convection flow in a ventilated cavity,” Heat Transf. Eng., vol. 34, no. 15, pp. 1249–1261, 2013. DOI: 10.1080/01457632.2013.730919.
  • D. Chatterjee and R. Mishra, “Numerical investigation of transient magnetohydrodynamic mixed convection in a ventilated cavity containing two heated circular cylinders,” Heat Transf. Eng., vol. 39, no. 12, pp. 1052–1066, 2018. DOI: 10.1080/01457632.2017.1358487.
  • S. K. Gupta, D. Chatterjee, and B. Mondal, “Investigation of mixed convection in a ventilated cavity in the presence of a heat conducting circular cylinder,” Numer. Heat Transf. Part A Appl., vol. 67, no. 1, pp. 52–74, 2015. DOI: 10.1080/10407782.2014.916113.
  • K. Kalidasan, R. Velkennedy, and P. R. Kanna, “Laminar natural convection of copper-titania/water hybrid nanofluid in an open-ended c-shaped enclosure with an isothermal block,” J. Mol. Liq., vol. 246, pp. 251–258, 2017. DOI: 10.1016/j.molliq.2017.09.071.
  • K. Kalidasan and P. R. Kanna, “Natural convection on an open square cavity containing diagonally placed heaters and adiabatic square block and filled with hybrid nanofluid of nanodiamond-cobalt oxide/water,” Int. Commun. Heat Mass Transfer, vol. 81, pp. 64–71, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.005.
  • L. Kolsi, K. Kalidasan, A. Alghamdi, M. N. Borjini, and P. R. Kanna, “Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide–water nanofluid,” Numer. Heat Transf. Part A Appl., vol. 70, no. 3, pp. 242–259, 2016. DOI: 10.1080/10407782.2016.1173478.
  • A. A. Al-Rashed et al., “Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block,” Int. J. Mech. Sci., vol. 135, pp. 362–375, 2018. DOI: 10.1016/j.ijmecsci.2017.11.033.
  • L. Nasseri, D. E. Ameziani, O. Rahli, and R. Bennacer, “Numerical study of mixed convection in a ventilated square enclosure with the lattice Boltzmann method,” Numer. Heat Transf. Part A Appl., vol. 75, no. 10, pp. 674–689, 2019. DOI: 10.1080/10407782.2019.1608765.
  • M. Chaour and S. Boudebous, “Prandtl and Richardson number effects on mixed convection in a vented enclosure on application to the cooling of the fins,” DDF, vol. 406, pp. 78–86, 2021. DOI: 10.4028/www.scientific.net/DDF.406.78.
  • K. Ezzaraa et al., “Radiation effect on mixed convection cooling in a ventilated horizontal cavity with multiple ports,” Int. J. Mech. Sci., vol. 153–154, pp. 310–320, 2019. DOI: 10.1016/j.ijmecsci.2019.01.032.
  • R. Velkennedy, J. J. Nisrin, K. Kalidasan, and P. R. Kanna, “Numerical investigation of convective heat transfer in a rectangular vented cavity with two outlets and cold partitions,” Int. Commun. Heat Mass Transfer, vol. 129, pp. 105659, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105659.
  • M. K. Das and P. R. Kanna, “Application of an ADI scheme for steady and periodic solutions in a lid-driven cavity problem,” Int. J. Numer. Methods Heat Fluid Flow, vol. 17, no. 8, pp. 799–822, 2007. DOI: 10.1108/09615530710825783.
  • J. Mizushima and H. Takahashi, “Transitions of flow in a distributor cavity with one inlet and two outlets,” J. Phys. Soc. Jpn., vol. 68, no. 11, pp. 3514–3519, 1999. DOI: 10.1143/JPSJ.68.3514.
  • M. M. El-Gendi, “Numerical simulation of unsteady natural convection flow inside a pattern of connected open square cavities,” Int. J. Therm. Sci., vol. 127, pp. 373–383, 2018. DOI: 10.1016/j.ijthermalsci.2018.02.008.
  • A. Minaei, M. Ashjaee, and M. Goharkhah, “Experimental and numerical study of mixed and natural convection in an enclosure with a discrete heat source and ventilation ports,” Heat Transf. Eng., vol. 35, no. 1, pp. 63–73, 2014. DOI: 10.1080/01457632.2013.810455.
  • A. Fabregat and J. Pallarès, “Heat transfer and boundary layer analyses of laminar and turbulent natural convection in a cubical cavity with differently heated opposed walls,” Int. J. Heat Mass Transfer, vol. 151, pp. 119409, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119409.
  • G. de Vahl Davis, “Natural convection of air in a square cavity. A benchmark numerical solution,” Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 249–264, 1983. DOI: 10.1002/fld.1650030305.
  • P. Kocutar, L. Škerget, and J. Ravnik, “Hybrid LES/URANS simulation of turbulent natural convection by BEM,” Eng. Anal. Bound. Elem., vol. 61, pp. 16–26, 2015. DOI: 10.1016/j.enganabound.2015.06.005.
  • P. Karki, A. K. Yadav, and D. Arumuga Perumal, “Study of adiabatic obstacles on natural convection in a square cavity using lattice Boltzmann method,” J. Therm. Sci. Eng. Appl., vol. 11, no. 3, pp. 034502, 2019. DOI: 10.1115/1.4041875.
  • A. Gustavsen and J. V. Thue, “Numerical simulation of natural convection in three-dimensional cavities with a high vertical aspect ratio and a low horizontal aspect ratio,” J. Build. Phys., vol. 30, no. 3, pp. 217–240, 2007. DOI: 10.1177/1744259107071660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.