Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 7
156
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical study and parameters estimation of anomalous diffusion process in porous media based on variable-order time fractional dual-phase-lag model

, , & ORCID Icon
Pages 679-710 | Received 24 Aug 2022, Accepted 06 Dec 2022, Published online: 06 Jan 2023

References

  • A. A. Nnanna, A. Haji-Sheikh, and K. Harris, “Experimental study of non-Fourier thermal response in porous media,” J. Porous Media., vol. 8, no. 1, pp. 31–44, 2005. DOI: 10.1615/JPorMedia.v8.i1.30.
  • C. Cattaneo, “Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee,” C. R. Hebd. Séances Acad., vol. 247, no. 4, pp. 431–433, 1958.
  • P. Vernotte, “La veritable equation de la chaleur,” C. R. Hebd. Séances Acad., vol. 247, no. 23, pp. 2103–2105, 1958.
  • D. Tzou, “A unified field approach for heat conduction from macro-to micro-scales,” J. Heat Transfer., vol. 117, no. 1, pp. 8–16, Feb 1995. DOI: 10.1115/1.2822329.
  • D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior. United Kingdom: John Wiley & Sons, 2014
  • M. Xu and L. Wang, “Dual-phase-lagging heat conduction based on Boltzmann transport equation,” Int. J. Heat Mass Transf., vol. 48, no. 25-26, pp. 5616–5624, Dec 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.05.040.
  • S. L. Lurie and P. A. Belov, “On the nature of the relaxation time, the Maxwell–Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity,” Continuum Mech. Thermodyn., vol. 32, no. 3, pp. 709–728, 2020. Oct DOI: 10.1007/s00161-018-0718-7.
  • W. Minkowycz, A. Haji-Sheikh, and K. Vafai, “On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number,” Int. J. Heat Mass Transf., vol. 42, no. 18, pp. 3373–3385, Sept1999. DOI: 10.1016/S0017-9310(99)00043-5.
  • A. A. Nnanna, A. Haji-Sheikh, and K. T. Harris, “Experimental study of local thermal non-equilibrium phenomena during phase change in porous media,” Int. J. Heat Mass Transf, vol. 47nos., no. 19-20, pp. 4365–4375, Sept 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.04.029.
  • A. Gandomkar and K. E. Gray, “Local thermal non-equilibrium in porous media with heat conduction,” Int. J. Heat Mass Transf., vol. 124, pp. 1212–1216, Sept 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.011.
  • W. Kaminski, “Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure,” J. Heat Transfer., vol. 112, no. 3, pp. 555–560, Aug 1990. DOI: 10.1115/1.2910422.
  • A. Graßmann and F. Peters, “Experimental investigation of heat conduction in wet sand,” Heat Mass Transfer., vol. 35, no. 4, pp. 289–294, Sept 1999. DOI: 10.1007/s002310050326.
  • H. Herwig and K. Beckert, “Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure,” Heat Mass Transfer., vol. 36, no. 5, pp. 387–392, Sept 2000. DOI: 10.1007/s002310000081.
  • W. Roetzel, N. Putra, and S. K. Das, “Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure,” Int. J. Therm. Sci., vol. 42, no. 6, pp. 541–552, June 2003. DOI: 10.1016/S1290-0729(03)00020-6.
  • K. Mitra, S. Kumar, A. Vedevarz, and M. Moallemi, “Experimental evidence of hyperbolic heat conduction in processed meat,” J. Heat Transfer., vol. 117, no. 3, pp. 568–573, Aug1995. DOI: 10.1115/1.2822615.
  • P. J. Antaki, “New interpretation of non-Fourier heat conduction in processed meat,” J. Heat Transfer, vol. 127, no. 2, pp. 189–193, Feb 2005. DOI: 10.1115/1.1844540.
  • H. R. Ghazizadeh, A. Azimi, and M. Maerefat, “An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation,” Int. J. Heat Mass Transf., vol. 55, no. 7-8, pp. 2095–2101, Mar 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.12.012.
  • X. Huan-Ying and J. Xiao-Yun, “Time fractional dual-phase-lag heat conduction equation,” Chin. Phys. B., vol. 24, no. 3, pp. 034401. Jan 2015. DOI: 10.1088/1674-1056/24/3/034401.
  • H. T. Chen, K. C. Liu, X. J. Xu, and T. H. Lin, “Analytical study for the estimation of thermal properties of processed meat based on hyperbolic heat conduction model,” Inverse Probl. Sci. Eng., vol. 25, no. 1, pp. 41–56, Dec 2017. DOI: 10.1080/17415977.2015.1135330.
  • H. Askarizadeh and H. Ahmadikia, “Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue,” Heat Mass Transfer, vol. 50, no. 12, pp. 1673–1684, May 2014. DOI: 10.1007/s00231-014-1373-6.
  • H. Askarizadeh and H. Ahmadikia, “Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations,” Appl. Math. Model., vol. 39, no. 13, pp. 3704–3720, July 2015. DOI: 10.1016/j.apm.2014.12.003.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, Aug 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • K. C. Liu and J. C. Wang, “Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model,” Int. J. Heat Mass Transf., vol. 70, pp. 621–628, Mar 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.044.
  • S. Kumar and A. Srivastava, “Thermal analysis of laser-irradiated tissue phantoms using dual phase lag model coupled with transient radiative transfer equation,” Int. J. Heat Mass Transf., vol. 90, pp. 466–479, Nov 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.077.
  • F. de Monte and A. Haji-Sheikh, “Bio-heat diffusion under local thermal non-equilibrium conditions using dual-phase lag-based Green’s functions,” Int. J. Heat Mass Transf., vol. 113, pp. 1291–1305, Oct 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.006.
  • P. Goudarzi and A. Azimi, “Numerical simulation of fractional non-Fourier heat conduction in skin tissue,” J Therm Biol, vol. 84, pp. 274–284, Aug 2019. DOI: 10.1016/j.jtherbio.2019.05.021.
  • A. M. Abd-Alla, S. M. Abo-Dahab, and A. A. Kilany, “Effect of several fields on a generalized thermoelastic medium with voids in the context of Lord-Shulman or dual-phase-lag models,” Mech. Based Des. Struct. Mach., vol. 50, no. 11, pp. 3901–3924, Sept 2022. DOI: 10.1080/15397734.2020.1823852.
  • M. Ragab, S. M. Abo-Dahab, A. E. Abouelregal, and A. A. Kilany, “A thermoelastic piezoelectric fixed rod exposed to an axial moving heat source via a dual-phase-lag model,” Complexity., vol. 2021, pp. 1–11, Jan 2021. DOI: 10.1155/2021/5547566.
  • A. A. Kilany, S. M. Abo-Dahab, A. M. Abd-Alla, and E. A. B. Abdel-Salam, “Non-integer order analysis of electro-magneto-thermoelastic with diffusion and voids considering Lord–Shulman and dual-phase-lag models with rotation and gravity,” Waves Random Complex Media., vol. 32, pp. 1–31, July 2022. DOI: 10.1080/17455030.2022.2092663.
  • S. M. Abo-Dahab, A. M. Abd-Alla, and A. A. Kilany, “Homotopy perturbation method on wave propagation in a transversely isotropic thermoelastic two-dimensional plate with gravity field,” Numer. Heat Transf. A: Appl., vol. 82, no. 7, pp. 398–410, Jun 2022. DOI: 10.1080/10407782.2022.2079292.
  • A. Compte and R. Metzler, “The generalized Cattaneo equation for the description of anomalous transport processes,” J. Phys. A: Math. Gen., vol. 30, no. 21, pp. 7277–7289, Nov 1997. DOI: 10.1088/0305-4470/30/21/006.
  • J. L. Battaglia, L. L. Lay, J. C. Batsale, A. Oustaloup, and O. Cois, “Utilisation de modèles d’identification non entiers pour la résolution de problèmes inverses en conduction,” Int. J. Therm. Sci., vol. 39, no. 3, pp. 374–389, Mar 2000. DOI: 10.1016/S1290-0729(00)00220-9.
  • J. L. Battaglia, O. Cois, L. Puigsegur, and A. Oustaloup, “Solving an inverse heat conduction problem using a non-integer identified model,” Int. J. Heat Mass Transf, vol. 44, no. 14, pp. 2671–2680, July 2001. DOI: 10.1016/S0017-9310(00)00310-0.
  • O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain,” Nonlinear Dyn., vol. 29, no. 1/4, pp. 145–155, July 2002. DOI: 10.1023/A:1016539022492.
  • Y. Povstenko, “Time-fractional radial diffusion in a sphere,” Nonlinear Dyn., vol. 53, no. 1-2, pp. 55–65, Sept 2008. DOI: 10.1007/s11071-007-9295-1.
  • Y. Povstenko, “Fundamental solutions to three-dimensional diffusion-wave equation and associated diffusive stresses,” Chaos Solit. Fractals, vol. 36, no. 4, pp. 961–972, May 2008. DOI: 10.1016/j.chaos.2006.07.031.
  • Y. Qiao, X. Wang, H. Qi, and H. Xu, “Numerical simulation and parameters estimation of the time fractional dual-phase-lag heat conduction in femtosecond laser heating,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105355, June 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105355.
  • Z. M. Odibat and N. T. Shawagfeh, “Generalized Taylor’s formula,” Appl. Math. Comput., vol. 186, no. 1, pp. 286–293, Mar 2007. DOI: 10.1016/j.amc.2006.07.102.
  • T. Atanacković, S. Konjik, L. Oparnica, and D. Zorica, “The Cattaneo type space-time fractional heat conduction equation,” Continuum Mech. Thermodyn., vol. 24, no. 4-6, pp. 293–311, Oct 2012. DOI: 10.1007/s00161-011-0199-4.
  • M. Mozafarifard, et al., “Numerical study of anomalous heat conduction in absorber plate of a solar collector using time-feacrional single-phase-lag model,” Case Stud. Therm. Eng., vol. 34, pp. 102071, June 2022. DOI: 10.1016/j.csite.2022.102071.
  • H. Qi and X. Guo, “Transient fractional heat conduction with generalized Cattaneo model,” Int. J. Heat Mass Transf., vol. 76, pp. 535–539, Sept 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.086.
  • T. Mishra and K. Rai, “Fractional single-phase-lagging heat conduction model for describing anomalous diffusion,” Propuls. Power Res., vol. 5, no. 1, pp. 45–54, Mar 2016. DOI: 10.1016/j.jppr.2016.01.003.
  • M. Mozafarifard and D. Toghraie, “Time-fractional subdiffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process,” Int. J. Heat Mass Transf., vol. 153, pp. 119592, June 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119592.
  • M. Mozafarifard, S. M. Mortazavinejad, and D. Toghraie, “Numerical simulation of fractional non-Fourier heat transfer in thin metal films under short-pulse laser,” Int. Commun. Heat Mass Transf, vol. 115, pp. 104607, June 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104607.
  • M. Mozafarifard and D. Toghraie, “Numerical analysis of time-fractional non-Fourier heat conduction in porous media based on Caputo fractional derivative under short heating pulses,” Heat Mass Transfer., vol. 56, no. 11, pp. 3035–3045, July 2020. DOI: 10.1007/s00231-020-02920-y.
  • M. Mozafarifard, D. Toghraie, and H. Sobhani, “Numerical study of fast transient non-diffusive heat conduction in a porous medium composed of solid-glass spheres and air using fractional Cattaneo subdiffusion model,” Int. Commun. Heat Mass Transf., vol. 122, pp. 105192, Mar 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105192.
  • W. H. Giedt, “The determination of transient temperatures and heat transfer at a gas-metal interface applied to a 40-mm gun barrel,” J. Jet Propuls., vol. 25, no. 4, pp. 158–162, Dec 1955. DOI: 10.2514/8.6642.
  • D. Tang and N. Araki, “An inverse analysis to estimate relaxation parameters and thermal diffusivity with a universal heat conduction equation,” Int. J. Thermophys, vol. 21, no. 2, pp. 553–561, Mar 2000. DOI: 10.1023/A:1006664419866.
  • D. Tang and N. Araki, “Non-fourier heat condution behavior in finite mediums under pulse surface heating,” Mater. Sci. Eng. A., vol. 292, no. 2, pp. 173–178, Nov 2000. DOI: 10.1016/S0921-5093(00)01000-5.
  • H. Rahideh, P. Malekzadeh, M. Golbahar Haghighi, and M. Vaghefi, “Two-dimensional inverse transient heat conduction analysis of laminated functionally graded circular plates,” Numer. Heat Transf. A: Appl., vol. 62, no. 12, pp. 992–1014, Oct 2012. DOI: 10.1080/10407782.2012.715987.
  • M. G. Haghighi, M. Eghtesad, P. Malekzadeh, and D. Necsulescu, “Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates,” Energy Convers. Manag., vol. 50, no. 3, pp. 450–457, Mar 2009. DOI: 10.1016/j.enconman.2008.11.006.
  • M. Mozafarifard, A. Azimi, and S. Mehrzad, “Numerical simulation of dual-phase-lag model and inverse fractional single-phase-lag problem for the non-Fourier heat conduction in a straight fin,” J. Therm. Sci., vol. 29, no. 3, pp. 632–646, Nov 2020. DOI: 10.1007/s11630-019-1137-1.
  • R. Brociek, A. Wajda, and D. Słota, “Inverse problem for a two-dimensional anomalous diffusion equation with a fractional derivative of the Riemann–Liouville type,” Energies, vol. 14, no. 11, pp. 3082, May 2021. DOI: 10.3390/en1411.
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. USA: Academic Press, 1998.
  • J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science. USA: John Wiley & Sons, 1977.
  • J. E. Dennis, Jr and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. USA: Siam, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.