Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 7
73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of waviness on thermal-flow characteristics in an inclined trapezoidal cavity filled with nano-encapsulated phase change material and water

, , ORCID Icon &
Pages 801-818 | Received 18 Aug 2022, Accepted 21 Dec 2022, Published online: 13 Mar 2023

References

  • J. M. Khodadadi and S. F. Hosseinizadeh, “Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage,” Int. Commun. Heat Mass Transf., vol. 34, no. 5, pp. 534–543, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.02.005.
  • S. Wu, D. Zhu, X. Li, H. Li, and J. Lei, “Thermal energy storage behavior of Al2O3–H2O nanofluids,” Thermochim. Acta, vol. 483, no. 12, pp. 73–77, 2009. DOI: 10.1016/j.tca.2008.11.006.
  • A. A. Ranjbar, S. Kashani, S. F. Hosseinizadeh, and M. Ghanbarpour, “Numerical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material,” Therm. Sci., vol. 15, no. 1, pp. 169–181, 2011. DOI: 10.2298/TSCI100412060R.
  • M. Ghalambaz, A. Doostani, E. Izadpanahi, and A. J. Chamkha, “Phase-change heat transfer in a cavity heated from below: The effect of utilizing single or hybrid nanoparticles as additives,” J. Taiwan Inst. Chem. Eng., vol. 72, pp. 104–115, 2017. DOI: 10.1016/j.jtice.2017.01.010.
  • S. Motahar, A. A. Alemrajabi, and R. Khodabandeh, “Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 109, pp. 134–146, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.109.
  • M. Al-Jethelah, S. H. Tasnim, S. Mahmud, and A. Dutta, “Melting of nano-PCM in an enclosed space: Scale analysis and heatline tracking,” Int. J. Heat Mass Transf., vol. 119, pp. 841–859, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.106.
  • F. Selimefendigil, H. F. Oztop, and A. J. Chamkha, “Natural convection in a CuO-water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1577–1594, 2019. DOI: 10.1007/s10973-018-7714-9.
  • N. S. Bondareva, B. Buonomo, O. Manca, and M. A. Sheremet, “Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence,” Int. J. Heat Mass Transf., vol. 135, pp. 1063–1072, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.045.
  • M. Alizadeh et al., “An analysis of latent heat thermal energy storage in a hexagonal triplex-tube unit with curve shape fin and CNTs,” Case Stud. Therm. Eng., vol. 36, pp. 102241, 2022. DOI: 10.1016/j.csite.2022.102241.
  • W. Su, J. Darkwa, and G. Kokogiannakis, “Review of solid-liquid phase change materials and their encapsulation technologies,” Renew. Sustain. Energy Rev., vol. 48, pp. 373–391, 2015. DOI: 10.1016/j.rser.2015.04.044.
  • M. Ghalambaz, A. J. Chamkha, and D. Wen, “Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity,” Int. J. Heat Mass Transf., vol. 138, pp. 738–749, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.037.
  • A. Hajjar, S. A. M. Mehryan, and M. Ghalambaz, “Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension,” Int. J. Mech. Sci., vol. 166, pp. 105243, 2020. DOI: 10.1016/j.ijmecsci.2019.105243.
  • M. Ghalambaz, S. A. M. Mehryan, A. Hajjar, and A. Veisimoradi, “Unsteady natural convection flow of a suspension comprising nano-encapsulated phase change materials (NEPCMs) in a porous medium,” Adv. Powder Technol., vol. 31, no. 3, pp. 954–966, 2020. DOI: 10.1016/j.apt.2019.12.010.
  • M. Ghalambaz, S. A. M. Mehryan, I. Zahmatkesh, and A. Chamkha, “Free convection heat transfer analysis of a suspension of nano-encapsulated phase change materials (NEPCMs) in an inclined porous cavity,” Int. J. Therm. Sci., vol. 157, pp. 106503, 2020. DOI: 10.1016/j.ijthermalsci.2020.106503.
  • S. M. H. Zadeh, S. A. M. Mehryan, M. Sheremet, M. Ghodrat, and M. Ghalambaz, “Thermo-hydrodynamic and entropy generation analysis of a dilute aqueous suspension enhanced with nano-encapsulated phase change material,” Int. J. Mech. Sci., vol. 178, pp. 105609, 2020. DOI: 10.1016/j.ijmecsci.2020.105609.
  • H. Saleh, Z. Siri, and M. Ghalambaz, “Natural convection from a bottom heated of an asymmetrical U-shaped enclosure with nano-encapsulated phase change material,” J. Energy Storage, vol. 38, pp. 102538, 2021. DOI: 10.1016/j.est.2021.102538.
  • A. Alhashash and H. Saleh, “Impact of surface undulation on flow and heat transfer characteristics in an enclosure filled with nanoencapsulated phase change materials (NEPCMs),” Math. Probl. Eng., vol. 2021, pp. 1–13, 2021. DOI: 10.1155/2021/8899995.
  • A. M. Aly, Z. Raizah, and A. Al-Hanaya, “Double rotations between an inner wavy shape and a hexagonal-shaped cavity suspended by NEPCM using a time-fractional derivative of the ISPH method,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105533, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105533.
  • P. Kumar and K. M. Pandey, “Numerical investigation of thermo-hydraulic transport characteristics of two-dimensional, steady flow through partially porous wavy channel,” Numer. Heat Transf. A: Appl., vol. 81, no. 12, pp. 31–47, 2022. DOI: 10.1080/10407782.2021.1969809.
  • M. Ghalambaz et al., “Thermal behavior and energy storage of a suspension of nano-encapsulated phase change materials in an enclosure,” Adv. Powder Technol., vol. 32, no. 6, pp. 2004–2019, 2021. DOI: 10.1016/j.apt.2021.04.008.
  • Z. Raizah and A. M. Aly, “Double-diffusive convection of a rotating circular cylinder in a porous cavity suspended by nano-encapsulated phase change materials,” Case Stud. Therm. Eng., vol. 24, pp. 100864, 2021. DOI: 10.1016/j.csite.2021.100864.
  • E. Golab et al., “Investigation of the effect of adding nano-encapsulated phase change material to water in natural convection inside a rectangular cavity,” J. Energy Storage, vol. 40, pp. 102699, 2021. DOI: 10.1016/j.est.2021.102699.
  • S. M. Seyyedi, M. Hashemi-Tilehnoee, and M. Sharifpur, “Effect of inclined magnetic field on the entropy generation in an annulus filled with NEPCM suspension,” Math. Probl. Eng., vol. 2021, pp. 1–14, 2021. DOI: 10.1155/2021/8103300.
  • A. N. Sadr et al., “Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder,” J. Energy Storage, vol. 47, pp. 103606, 2022. DOI: 10.1016/j.est.2021.103606.
  • A. Alhashash and H. Saleh, “Free convection flow of a heterogeneous mixture of water and nano-encapsulated phase change particle (NEPCP) in enclosure subject to rotation,” J. Energy Storage, vol. 51, pp. 104168, 2022. DOI: 10.1016/j.est.2022.104168.
  • S. Salman, A. R. A. Talib, S. Saadon, and M. T. H. Sultan, “Hybrid nanofluid flow and heat transfer over backward and forward steps: A review,” Powder Technol., vol. 363, pp. 448–472, 2020. DOI: 10.1016/j.powtec.2019.12.038.
  • H. Saleh, R. Roslan, and I. Hashim, “Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure,” Int. J. Heat Mass Transf., vol. 54, no. 13, pp. 194–201, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.053.
  • R. Nasrin and S. Parvin, “Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water–Cu nanofluid,” Int. Commun. Heat Mass Transf., vol. 39, no. 2, pp. 270–274, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.11.004.
  • R. K. Sharma, P. Ganesan, J. N. Sahu, H. S. C. Metselaar, and T. M. I. Mahlia, “Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity,” Powder Technol., vol. 268, pp. 38–47, 2014. DOI: 10.1016/j.powtec.2014.08.009.
  • B. Takabi and S. Salehi, “Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid,” Adv. Mech. Eng., vol. 6, pp. 147059, 2014. DOI: 10.1155/2014/147059.
  • W. Tang, M. Hatami, J. Zhou, and D. Jing, “Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviations,” Int. J. Heat Mass Transf., vol. 115, pp. 430–440, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.057.
  • M. H. Esfe et al., “Natural convection in a trapezoidal enclosure filled with carbon nanotube–EG–water nanofluid,” Int. J. Heat Mass Transf., vol. 92, pp. 76–82, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.036.
  • M. Sheremet, I. Pop, H. F. Oztop, and N. Abu-Hamdeh, “Natural convection of nanofluid inside a wavy cavity with a non-uniform heating,” Int. J. Numer. Meth. Heat Fluid Flow, vol. 27, no. 4, pp. 958–980, 2017. DOI: 10.1108/HFF-02-2016-0063.
  • R. U. Haq, S. N. Kazmi, and T. Mekkaoui, “Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM,” Int. J. Heat Mass Transf., vol. 112, pp. 972–982, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.041.
  • A. I. Alsabery, A. J. Chamkha, H. Saleh, I. Hashim, and B. Chanane, “Darcian natural convection in an inclined trapezoidal cavity partly filled with a porous layer and partly with a nanofluid layer,” JSM, vol. 46, no. 5, pp. 803–815, 2017. DOI: 10.17576/jsm-2017-4605-15.
  • F. Selimefendigil, “Natural convection in a trapezoidal cavity with an inner conductive object of different shapes and filled with nanofluids of different nanoparticle shapes,” Iran J. Sci. Technol. Trans. Mech. Eng., vol. 42, no. 2, pp. 169–184, 2018. DOI: 10.1007/s40997-017-0083-3.
  • A. K. Hussein, H. K. Hamzah, F. H. Ali, and L. Kolsi, “Mixed convection in a trapezoidal enclosure filled with two layers of nanofluid and porous media with a rotating circular cylinder and a sinusoidal bottom wall,” J. Therm. Anal. Calorim., vol. 141, no. 5, pp. 2061–2079, 2020. DOI: 10.1007/s10973-019-08963-6.
  • M. Hamid, M. Usman, Z. H. Khan, R. U. Haq, and W. Wang, “Heat transfer and flow analysis of Casson fluid enclosed in a partially heated trapezoidal cavity,” Int. Commun. Heat Mass Transf., vol. 108, pp. 104284, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104284.
  • S. E. Ahmed, “Non-darcian natural convection of a nanofluid due to triangular fins within trapezoidal enclosures partially filled with a thermal non-equilibrium porous layer,” J. Therm. Anal. Calorim., vol. 145, no. 5, pp. 2691–2706, 2021. DOI: 10.1007/s10973-020-09831-4.
  • M. S. Sadeghi et al., “On the natural convection of nanofluids in diverse shapes of enclosures: An exhaustive review,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 1–22, 2022. DOI: 10.1007/s10973-020-10222-y.
  • S. Zaharuddin, Z. Siri, H. Saleh, and I. Hashim, “Buoyant marangoni convection of nanofluids in right-angled trapezoidal cavity,” Numer. Heat Transf. A, vol. 78, no. 11, pp. 656–673, 2020. DOI: 10.1080/10407782.2020.1805223.
  • Z. H. Khan, O. D. Makinde, M. Hamid, R. U. Haq, and W. A. Khan, “Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium,” J. Magn. Magn. Mater., vol. 499, pp. 166241, 2020. DOI: 10.1016/j.jmmm.2019.166241.
  • Z. H. Khan, W. A. Khan, R. U. Haq, M. Usman, and M. Hamid, “Effects of volume fraction on water-based carbon nanotubes flow in a right-angle trapezoidal cavity: FEM based analysis,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104640, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104640.
  • Z. H. Khan, M. Hamid, W. A. Khan, L. Sun, and H. Liu, “Thermal non-equilibrium natural convection in a trapezoidal porous cavity with heated cylindrical obstacles,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105460, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105460.
  • Z. H. Khan, W. A. Khan, M. A. Sheremet, M. Hamid, and M. Du, “Irreversibilities in natural convection inside a right-angled trapezoidal cavity with sinusoidal wall temperature,” Phys. Fluids, vol. 33, no. 8, pp. 083612, 2021. DOI: 10.1063/5.0061019.
  • Z. H. Khan et al., “Hybrid nanofluid flow around a triangular-shaped obstacle inside a split lid-driven trapezoidal cavity,” Eur. Phys. J.: Spec. Top., vol. 231, no. 13, pp. 2749–2759, 2022.
  • O. Prakash, P. Barman, P. S. Rao, and R. P. Sharma, “MHD free convection in a partially open wavy porous cavity filled with nanofluid,” Numer. Heat Transf. A, pp. 1–15, 2022. DOI: 10.1080/10407782.2022.2132330.
  • S. Barlak, O. M. Sara, A. Karaipekli, and S. Yap Ic I, “Thermal conductivity and viscosity of nanofluids having nanoencapsulated phase change material,” Nanosc. Microsc. Therm., vol. 20, no. 2, pp. 85–96, 2016. DOI: 10.1080/15567265.2016.1174321.
  • L. Chai, R. Shaukat, L. Wang, and H. S. Wang, “A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks,” Appl. Therm. Eng., vol. 135, pp. 334–349, 2018. DOI: 10.1016/j.applthermaleng.2018.02.068.
  • F. A. Soomro, M. Hamid, S. T. Hussain, and R. U. Haq, “Constructional design and mixed convection heat transfer inside lid-driven semicircular cavity,” Eur. Phys. J. Plus, vol. 137, no. 7, pp. 1–12, 2022. DOI: 10.1140/epjp/s13360-022-03009-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.