Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 10
132
Views
4
CrossRef citations to date
0
Altmetric
Articles

Simulating and interpretation of MHD peristaltic transport of dissipated Eyring–Powell nanofluid flow through vertical divergent/nondivergent channel

ORCID Icon
Pages 1124-1148 | Received 18 Nov 2022, Accepted 18 Jan 2023, Published online: 15 Mar 2023

References

  • T. W. Latham, “Fluid motion in a peristaltic pump,” M.Sc. thesis, MIT, Cambridge, MA, 1966.
  • T. Hayat, N. Ali, and S. Asgher, “Hall effects on peristaltic flow of a Maxwell fluid in a porous medium,” Phys. Lett. A, vol. 363, no. 56, pp. 397–403, 2007. DOI: 10.1016/j.physleta.2006.10.104.
  • T. Hayat and N. Ali, “A mathematical description of peristaltic hydromagnetic flow in a tube,” Appl. Math. Comput., vol. 188, no. 2, pp. 1491–1502, 2007. DOI: 10.1016/j.amc.2006.11.035.
  • Y. Wang, T. Hayat, and K. Huttler, “Peristaltic flow of a Johnson Segalman fluid through a deformable tube,” Theor. Comput. Fluid Dyn., vol. 21, no. 5, pp. 369–380, 2007. DOI: 10.1007/s00162-007-0054-1.
  • N. Ali, T. Hayat, and M. Sajid, “Peristaltic flow of a couple stress fluid in an asymmetric channel,” Biorheology, vol. 44, pp. 125–138, 2007.
  • S. Srinivas and M. Kothandapni, “Peristaltic transport in an asymmetric channel with heat transfer – A note,” Int. Commun. Heat Mass Transf., vol. 35, no. 4, pp. 514–522, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.08.011.
  • D. Tripathi, S. K. Pandey, and S. Das, “Peristaltic flowof viscoelastic fluid with fractional Maxwell model through a channel,” Appl. Math. Comput., vol. 215, no. 10, pp. 3645–3654, 2010. DOI: 10.1016/j.amc.2009.11.002.
  • F. M. Abbasi, T. Hayat, F. Alsaadi, A. M. Dobai, and H. Gao, “MHD peristaltic transport of spherical and cylindrical magneto- nanoparticles suspended in water,” AIP Adv., vol. 5, no. 7, pp. 077104, 2015. DOI: 10.1063/1.4926368.
  • R. E. Powell and H. Eyring, “Mechanisms for the relaxation theory of viscosity,” Nature, vol. 154, no. 3909, pp. 427–428, 1944. DOI: 10.1038/154427a0.
  • Z. Nisar, T. Hayat, A. Alsaedi, and B. Ahmad, “Significance of activation energy in radiative peristaltic transport of Eyring Powell nanofluid,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104655, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104655.
  • Y. Y. Liang, G. A. F. Weihs, and D. F. Fletcher, “CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems,” Chem. Eng. Sci., vol. 192, pp. 16–24, 2018. DOI: 10.1016/j.ces.2018.07.009.
  • A. Alsaedi, T. Hayat, S. Qayyum, and R. Yaqoob, “Eyring–Powell nanofluid flow with nonlinear mixed convection: Entropy generation minimization,” Comput Methods Programs Biomed., vol. 186, pp. 105183, 2020. DOI: 10.1016/j.cmpb.2019.105183.
  • U. M. Zahid, Y. Akbar, and F. M. Abbasi, “Entropy generation analysis for peristaltically driven flow of hybrid nanofluid,” Chin. J. Phys., vol. 67, pp. 330–348, 2020. DOI: 10.1016/j.cjph.2020.07.009.
  • Y. Akbar and F. M. Abbasi, “Impact of variable viscosity on peristaltic motion with entropy generation,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104826, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104826.
  • T. Ambreen, A. Saleem, and C. W. Park, “Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy Forchheimer–Brinkman model coupled with multiphase Eulerian model,” Appl. Therm. Eng., vol. 173, pp. 115231, 2020. DOI: 10.1016/j.applthermaleng.2020.115231.
  • S. Akram, M. Athar, and K. Saeed, “Numerical simulation of effects of soret and dufour parameters on the peristaltic transport of a magneto six-constant jeffreys nanofluid in a non-uniform channel: A bio-nanoengineering model,” Eur. Phys. J. Spec. Top., vol. 231, no. 3, pp. 535–543, 2022.
  • K. Saeed et al., “Impact of partial slip-on double diffusion convection and inclined magnetic field on peristaltic wave of six-constant Jeffreys nanofluid along asymmetric channel,” Eur. Phys. J. Plus, vol. 137, no. 3, pp. 364, 2022.
  • A. A. M. Arafa, S. E. Ahmed, and M. M. Allan, “Peristaltic flow of non-homogeneous nanofluids through variable porosity and heat generating porous media with viscous dissipation: Entropy analyses,” Case Stud. Therm. Eng., vol. 32, pp. 101882, 2022. DOI: 10.1016/j.csite.2022.101882.
  • Y. Khan et al., “The role of double-diffusion convection and induced magnetic field on peristaltic pumping of a Johnson–Segalman nanofluid in a non-uniform channel,” Nanomaterials, vol. 12, no. 7, pp. 1051, 2022. DOI: 10.3390/nano12071051.
  • S. Akram, A. Razia, M. Y. Umair, T. Abdulrazzaq, and R. Z. Homod, “Double‐diffusive convection on peristaltic flow of hyperbolic tangent nanofluid in non‐uniform channel with induced magnetic field,” Math. Methods Appl. Sci., 2022. DOI: 10.1002/mma.8188.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Fluids Eng. Div., vol. 231, pp. 99–105, 1995.
  • N. Asokan, P. Gunnasegaran, and V. V. Wanatasanappan, “Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles” Therm. Sci. Eng. Prog., vol. 20, pp. 100727, 2020. DOI: 10.1016/j.tsep.2020.100727.
  • Y. Jiang, X. Zhou, and Y. Wang, “Effect of nanoparticle shapes on nanofluid mixed forced and thermocapillary convection in minichannel,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104884, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104884.
  • H. Saadati, K. Hadad, and A. Rabiee, “Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid,” Nucl. Eng. Technol., vol. 50, no. 5, pp. 639–647, 2018. DOI: 10.1016/j.net.2018.01.015.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Arrhenius activated energy impacts on irreversibility optimization due to unsteady stagnation point flow of radiative Casson nanofluids,” Eur. Phys. J. Plus, vol. 137, no. 11, pp. 1–14, 2022. DOI: 10.1140/epjp/s13360-022-03434-8.
  • S. Akram, M. Athar, K. Saeed, and M. Y. Umair, “Nanomaterials effects on induced magnetic field and double-diffusivity convection on peristaltic transport of prandtl nanofluids in inclined asymmetric channel,” Nanomater. Nanotechnol., vol. 12, pp. 184798042110486, 2022.
  • S. E. Ahmed, A. A. Arafa, S. A. Hussein, and Z. A. S. Raizah, “Novel treatments for the bioconvective radiative Ellis nanofluids wedge flow with viscous dissipation and an activation energy,” Case Stud. Therm. Eng., vol. 40, pp. 102510, 2022. DOI: 10.1016/j.csite.2022.102510.
  • S. Akram, M. Athar, K. Saeed, and A. Razia, “Impact of slip-on nanomaterial peristaltic pumping of magneto-Williamson nanofluid in an asymmetric channel under double-diffusivity convection,” Pramana - J. Phys., vol. 96, no. 1, pp. 1–13, 2022.
  • G. Kumaran et al., “Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media,” Eur. Phys. J. Plus, vol. 136, no. 11, pp. 1107, 2021.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “MHD Ellis nanofluids flow around rotating cone in the presence of motile oxytactic microorganisms,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106056, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106056.
  • H. T. Basha, R. Sivaraj, V. R. Prasad, and O. A. Beg, “Entropy generation of tangent hyperbolic nanofluid flow over a circular cylinder in the presence of nonlinear Boussinesq approximation: A non-similar solution,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2273–2289, 2021. DOI: 10.1007/s10973-020-09981-5.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Dissipated-radiative compressible flow of nanofluids over unsmoothed inclined surfaces with variable properties,” Numer. Heat Transf. A: Appl., 2022. DOI: 10.1080/10407782.2022.2141389.
  • G. Kumaran, R. Sivaraj, V. R. Prasad, O. A. Beg, and R. P. Sharma, “Finite difference computation of free magneto-convective Powell–Eyring nanofluid flow over a permeable cylinder with variable thermal conductivity,” Phys. Scr., vol. 96, no. 2, pp. 025222, 2021. DOI: 10.1088/1402-4896/abd121.
  • H. T. Basha, R. Sivaraj, A. S. Reddy, A. J. Chamkha, and H. Baskonus, “A numerical study of the ferromagnetic flow of carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole,” AIMS Math., vol. 5, no. 5, pp. 4197–4219, 2020. DOI: 10.3934/math.2020268.
  • A. Bhattacharyya, R. Kumar, S. Bahadur, G. S. Seth, and Sunil, “Modeling and interpretation of peristaltic transport of Eyring–Powell fluid through uniform/non-uniform channel with joule heating and wall flexibility,” Chinese J. Phys., vol. 80, pp. 167–182, 2022. DOI: 10.1016/j.cjph.2022.06.018.
  • B. Ahmed and T. Javed, “A study of full Navier–Stokes equations of peristaltic flow in a poroussaturated tube under the inducement of magnetic field: Finite element analysis,” Chaos Solitons Fractals, vol. 125, pp. 79–87, 2019. DOI: 10.1016/j.chaos.2019.05.012.
  • S. Nadeem and S. Akram, “Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel,” Math. Comput. Modell., vol. 52, no. 12, pp. 107–119, 2010. DOI: 10.1016/j.mcm.2010.02.001.
  • N. S. Akbar, “Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement,” J. Magn. Magn. Mater., vol. 378, pp. 463–468, 2015.
  • R. Ellahi, M. M. Bhatti, and C. Khalique, “Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field,” J. Mol. Liq., vol. 241, pp. 1059–1068, 2017. DOI: 10.1016/j.molliq.2017.06.082.
  • B. Mallick and J. Misra, “Peristaltic flow of Eyring–Powell nanofluid under the action of an electromagnetic field,” Eng. Sci. Technol. Int. J., vol. 22, no. 1, pp. 266–281, 2019. DOI: 10.1016/j.jestch.2018.12.001.
  • A. Tanveer, T. Hayat, F. Alsaadi, and A. Alsaedi, “Mixed convection peristaltic flow of Eyring–Powell nanofluid in a curved channel with compliant walls,” Comput. Biol. Med., vol. 82, pp. 71–79, 2017.
  • H. Basha and R. Sivaraj, “Entropy generation of peristaltic Eyring–Powell nanofluid flow in a vertical divergent channel for biomedical applications,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., vol. 235, no. 5, pp. 1575–1586, 2021. DOI: 10.1177/09544089211013926.
  • S. A. Hussein, S. E. Ahmed, and A. A. Arafa, “Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties,” ZAMM‐J. Appl. Math. Mech.s/Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 103, no. 1, pp. e202200284, 2022. DOI: 10.1002/zamm.202200284.
  • K. Ramesh and M. Devakar, “The effects of endoscope and heat transfer on the peristaltic flow of a second-grade fluid in an inclined tube,” J. Mech. Med. Biol., vol. 16, no. 04, pp. 1650057, 2016. DOI: 10.1142/S0219519416500573.
  • A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, no. 4, pp. 799–825, 1969. DOI: 10.1017/S0022112069000899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.