Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 10
95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Role of surface catalyzed reaction in the flow of temperature-dependent viscosity fluid over a rotating disk

ORCID Icon, , ORCID Icon &
Pages 1169-1190 | Received 05 Dec 2022, Accepted 18 Jan 2023, Published online: 15 Mar 2023

References

  • Von Kármán, T, “Uber laminare und turbulente Reibung,” Z. Angew. Math. Mech., vol. 1, pp. 233–252, 1921.
  • A. A. Alqarni, B. Alveroğlu, P. T. Griffiths, & S. J. Garrett, “The instability of non-Newtonian boundary-layer flows over rough rotating disks”. J. NonNewton Fluid Mech., vol .273, pp. 104174, 2019.
  • Tabassum, M., & Mustafa, M, “A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk,” Int. J. Heat Mass Transf. vol 123, pp. 979–987, 2018.
  • M. Ramzan, S. Riasat, S. Kadry, C. Long, Y. Nam &D. Lu, “Numerical simulation of 3D condensation nanofluid film flow with Carbon nanotubes on an inclined rotating disk”, Appl. Sci., vol. 10(1), pp. 168, 2020.
  • M. Turkyilmazoglu, “Fluid flow and heat transfer over a rotating and vertically moving disk”, Phys. Fluid., vol. 30(6), pp. 63605, 2018.
  • C. Yin, L. Zheng, L, C. Zhang, & X. Zhang, “Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction”, Propuls. Power Res., vol. 6(1), pp. 25–30, 2017.
  • M. Gholinia. K. Hosseinzadeh, H. Mehrzadi, D. D. Ganji, & A. A. Ranjbar, “Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions”, Case Stud. Therm. Eng., vol. 13, pp. 100356, 2019.
  • D. H. Doh, G. R. Cho, E. Ramya & M. Muthtamilselvan, “Cattaneo-Christov heat flux model for inclined MHD micropolar fluid flow past a non-linearly stretchable rotating disk”, Case Stud. Therm. Eng., vol. 14, pp. 100496, 2019.
  • K. Sharma, N. Vijay, O. D. Makinde, S. B. Bhardwaj, R. M. Singh, & F. Mabood, “Boundary layer flow with forced convective heat transfer and viscous dissipation past a porous rotating disk”, Chao. Solit. Fract. vol. 148, pp. 111055, 2021.
  • U. Khan, S. Bilal, A. Zaib, O. D. Makinde, A. Wakif, A, “Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation”, Numer. Methods Partial Differ. Equ., vol. 38(3), pp. 308–328, 2022.
  • S. Shaw, A. S. Dogonchi, M. K. Nayak, O. D. Makinde, “Impact of entropy generation and nonlinear thermal radiation on Darcy–Forchheimer flow of MnFe2O4-Casson/water nanofluid due to a rotating disk: application to brain dynamics”, Arab. J. Sci. Eng., vol. 45(7), pp. 5471–5490, 2020.
  • H. Vaidya, K. V. Prasad, K. Vajravelu, B. S. Setty, &O. D. Makinde, “Influence of variable liquid properties on magnetohydrodynamic flow and heat transfer of a Casson liquid over a slender rotating disk: numerical and optimal solution”, Comput. Therm. Sci., vol. 20(1), 2020.
  • K. V. Prasad, H. Vaidya, O. D. Makinde, K. Vajravelu, V. Ramajini, "Impact of suction/injection and heat transfer on unsteady MHD flow over a stretchable rotating disk”, Lat. Am. Appl. Res., vol. 50(3), pp. 159–165, 2020.
  • P. T. Griffiths, “Flow of a generalised Newtonian fluid due to a rotating disk”, J. Non-Newton. Fluid Mech., vol. 221, pp. 9–17, 2015.
  • M. Khan, T. Salahuddin, S. O. Stephen, “Thermo-physical characteristics of liquids and gases near a rotating disk,” Chao. Solit. Fract., vol. 141, pp. 110304, 2020.
  • M. Ramzan, J. D. Chung, N. Ullah, “Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk–A numerical approach”, Results Phys., vol. 7, pp. 3557–3566, 2017.
  • J. A. Khan, M. Mustafa, T. Hayat, M. Turkyilmazoglu, A. Alsaedi, “Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno’s model”, Int. J. Numer. Method H, 2017.
  • M. Turkyilmazoglu, “The MHD boundary layer flow due to a rough rotating disk”, Appl. Math., vol. 90(1), pp. 72–82, 2010.
  • T. Rafiq, M. Mustafa, M. A. Farooq, “Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties”, ICHMT, vol. 116, pp. 104673, 2020.
  • K. Naganthran, M. Mustafa, A. Mushtaq, R. Nazar, “Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties”, Phys. A: Stat. Mech. Appl., pp. 124773, 2020.
  • M. Qasim, M. I. Afridi, A. Wakif, S. Saleem, “Influence of variable transport properties on nonlinear radioactive Jeffrey fluid flow over a disk: utilization of generalized differential quadrature method”, AJSE, vol. 44(6), pp. 5987–5996, 2019.
  • J. Ahmed, M. Khan, L. Ahmad, A. K. Alzahrani, M. Alghamdi, “Thermally radiative flow of Maxwell nanofluid over a permeable rotating disk”, Phys. Scr., vol. 94(12), pp. 125016, 2019.
  • M. Turkyilmazoglu, “Unsteady MHD flow with variable viscosity: Applications of spectral scheme, “Int. J. Therm.”, vol. 49(3), pp. 563–570, 2010.
  • T. Hayat, M. Javed, M. Imtiaz, A. Alsaedi, “Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity”, Results Phys., vol. 8, pp. 341–351, 2018.
  • F. Frusteri, E. Osalusi, “On MHD and slip flow over a rotating porous disk with variable properties”, ICHMT, vol. 34(4), pp. 492–501, 2007.
  • A. Hamid, R. Naveen Kumar, R. J. Punith Gowda, R. S. Varun Kumar, S. U. Khan, M. Ijaz Khan, T. Muhammad, “Impact of Hall current and homogenous–heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface”, Waves Random Comp. Media, pp. 1–18, 2021.
  • B. M. Shankaralingappa, B. C. Prasannakumara, B. J. Gireesha, I. E. Sarris, “The impact of Cattaneo–Christov double diffusion on Oldroyd-B fluid flow over a stretching sheet with thermophoretic particle deposition and relaxation chemical reaction”, Inventions, vol. 6(4), pp. 95, 2021.
  • G. K. Ramesh, J. K. Madhukesh, B. C. Prasannakumara, G. S. Roopa, “Significance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reaction”, J. Therm. Anal. Calorim., pp. 1–11, 2021.
  • T. Hayat, M. Rashid, M. Imtiaz, A. Alsaedi, “Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions”, Int. J. Heat Mass Transf., vol. 113, pp. 96–105, 2017.
  • M. S. Hashmi, K. Al-Khaled, N. Khan, S. U. Khan, I. Tlili, “Buoyancy driven mixed convection flow of magnetized Maxell fluid with homogeneous-heterogeneous reactions with convective boundary conditions”, Resul. Phys., vol. 19, pp. 103379, 2020.
  • S. Riasat, M. Ramzan, S. Kadry, M. Y. Chu, “Significance of magnetic Reynolds number in a three-dimensional squeezing Darcy–Forchheimer hydromagnetic nanofluid thin-film flow between two rotating disks”, Sci. Rep. vol. 10(1), pp. 1–20, 2020.
  • J. K. Madhukesh, G. K. Ramesh, B. C. Prasannakumara, S. A. Shehzad, F. M. Abbasi, “Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy”, Appl. Math. Mech.-Engl., vol. 42(8), pp. 1191–1204, 2021.
  • R. J. Punith Gowda, R. Naveen Kumar, A. M. Jyothi, B. C. Prasannakumara, K. S. Nisar, “KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction”, Z Angew Math. Mech., vol. 12, pp. e202000372, 2021.
  • P. T. Manjunatha, A. J. Chamkha, R. J. Punith Gowda, R. Naveen Kumar, B. C. Prasannakumara, S. M. Naik, “Significance of Stefan Blowing and Convective Heat Transfer in Nanofluid Flow Over a Curved Stretching Sheet with Chemical Reaction”, J. Nanofl., vol. 10(2), pp. 285–291, 2021.
  • J. k. Madhukesh, R. V. Ramesh, G. K., Kumar, B. C. Prasannakumara, M. K. Alaoui, “Computational study of chemical reaction and activation energy on the flow of Fe3O4-Go/water over a moving thin needle: Theoretical aspects”, Comput. Theor. Chem., vol. 1202. pp. 113306, 2021.
  • R. S. Varun Kumar, P. Gunderi Dhananjaya, R. Naveen Kumar, R. J. Punith Gowda, B. C. Prasannakumara, “Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction”, Int. J. Comput. Methods Eng., pp. 1–8, 2021.
  • G. Hunt, N. Karimi, M. Torabi, “Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor”, Int. J. Heat Mass Transf., vol. 119, pp. 372–391, 2018.
  • D. G. Guthrie, M. Torabi, N. Karimi, N, “Combined heat and mass transfer analyses in catalytic microreactors partially filled with porous material-The influences of nanofluid and different porous-fluid interface models” Int. J. Therm., vol. 140, pp. 96–113, 2019.
  • A. Saeed, N. Karimi, G. Hunt, M. Torabi, “On the influences of surface heat release and thermal radiation upon transport in catalytic porous microreactors—a novel porous-solid interface model”, Chem. Eng. Process., vol, 143, 107602, 2019.
  • R. Alizadeh, N. Karimi, A. Mehdizadeh, A. Nourbakhsh, “Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform impinging flows in porous media” J. Therm. Anal. Calorim., vol. 138(1), pp. 659–678, 2019.
  • C. Liu, M. Pan, L. Zheng, P. Lin, “Effects of heterogeneous catalysis in porous media on nanofluid-based reactions”, ICHMT, vol. 110, pp. 104434, 2020.
  • M. Ramzan, N. Abid, I. Tlili, “Impact of melting heat transfer in the time-dependent squeezing nanofluid flow containing carbon nanotubes in a Darcy–Forchheimer porous media with Cattaneo-Christov heat flux”, Commun. Theor. Phys., vol. 72, no. 8, pp. 85801, 2020.
  • I. Tlili, M. Ramzan, S. Kadry, H. W. Kim, Y. Nam,” Radiative MHD nanofluid flow over a moving thin needle with Entropy generation in a porous medium with dust particles and Hall current”, Entropy, vol. 22(3), pp. 354, 2020.
  • Li, Z., Ramzan, M., Shafee, A., Saleem, S., Al-Mdallal, Q. M., & Chamkha, A. J, “Numerical approach for nanofluid transportation due to electric force in a porous enclosure”, Microsyst. Technol., vol. 25(6), pp. 2501–2514, 2019.
  • M.Bilal, M. Ramzan, “Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy–Forchheimer porous media”, J. Therm. Anal. Calorim., vol. 138(5), pp. 3127–3137, 2019.
  • M. Ramzan, H. Gul, S. Kadry, C. Lim, Y. Nam, F. Howari, “Impact of Nonlinear Chemical Reaction and Melting Heat Transfer on an MHD Nanofluid Flow over a Thin Needle in Porous Media”, Appl. Sci., vol. 9(24), pp. 5492, 2019.
  • M. A. Chaudhary, J. H. Merkin, “A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities”, Fluid Dyn. Res., vol. 16(6), pp. 311, 1995.
  • R. Miller, P. T. Griffiths, Z. Hussain, S. J. Garrett, “On the stability of a heated rotating-disk boundary layer in a temperature-dependent viscosity fluid”, PoF, vol. 32(2), pp. 24105, 2020.
  • Mohyud Din, S. T., Zubair, T., Usman, M., Hamid, M., Rafiq, M., & Mohsin, S., “Investigation of heat and mass transfer under the influence of variable diffusion coefficient and thermal conductivity”, Indian J. Phys., vol. 92(9), pp. 1109–1117, 2018.
  • Miller, R., Griffiths, P. T., Hussain, Z., & Garrett, S. J., “On the stability of a heated rotating-disk boundary layer in a temperature-dependent viscosity fluid”, Phys. Fluids, 32(2), pp. 24105, 2020.
  • Vajravelu, K., Prasad, K. V., & Ng, C. O., “The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water nanofluids”, Hydrodynam. B .vol. 25(1), pp. 1–9, 2013.
  • Salahuddin, T., Khan, M., Saeed, T., Ibrahim, M., & Chu, Y. M., “Induced MHD impact on exponentially varying viscosity of Williamson fluid flow with variable conductivity and diffusivity”, Case Stud. Therm. Eng., vol. 25, pp. 100895, 2021.
  • Sharma, B. K., Gandhi, R., Mishra, N. K., & Al-Mdallal, Q. M. “Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface”, Sci. Rep., Vol. 12(1), pp. 1–18, 2022.
  • Khanduri, U., & Sharma, B. K. “Entropy analysis for MHD flow subject to temperature-dependent viscosity and thermal conductivity”, “Nonlinear Dyn., pp. 457–471. Cham: Springer, 2022.
  • Sharma, B. K., Kumar, A., Gandhi, R., & Bhatti, M. M, “Exponential space and thermal-dependent heat source effects on electro-magneto-hydrodynamic Jeffrey fluid flow over a vertical stretching surface”, Int. J. Mod. Phys. B, vol. 36(30), pp. 2250220, 2022.
  • Sharma, B. K., & Gandhi, R, “Combined effects of Joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy–Forchheimer porous medium”, Propuls. Power Res., vol. 11(2), pp. 276–292, 2022.
  • Sharma, B. K., Sharma, P. K., & Chauhan, S. K, “Effect of MHD on unsteady oscillatory Couette flow through porous media”, Int. J. Appl. Mech., vol. 27(1), pp. 188–2022, 2022.
  • Sharma, B. K., & Kumawat, C, “Impact of temperature dependent viscosity and thermal conductivity on MHD blood flow through a stretching surface with Ohmic effect and chemical reaction”, Nonlin. Eng., vol. 10(1), pp. 255–271, 2021.
  • Sharma, B. K., Khanduri, U., Mishra, N. K., & Mekheimer, K. S. (2022). Combined effect of thermophoresis and Brownian motion on MHD mixed convective flow over an inclined stretching surface with radiation and chemical reaction. Int. J. Modern Phys. B, 2350095, 2022.
  • Sharma, B. K., Khanduri, U., Mishra, N. K., & Chamkha, A. J, “Analysis of Arrhenius activation energy on magnetohydrodynamic gyrotactic microorganism flow through porous medium over an inclined stretching sheet with thermophoresis and Brownian motion”, P. I. Mech. Eng. E.-J. Pro, pp. 9544089221128768, 2022.
  • Kumawat, C., Sharma, B. K., & Mekheimer, K. S., “Mathematical analysis of two-phase blood flow through a stenosed curved artery with hematocrit and temperature dependent viscosity”, Phys. Scr., vol. 96(12), 125277, 2021.
  • Ahmed, M. F., Zaib, A., Ali, F., Bafakeeh, O. T., Tag-ElDin, E. S. M., Guedri, K., … & Khan, M. I, “Numerical computation for gyrotactic microorganisms in MHD radiative Eyring–Powell nanomaterial flow by a static/moving wedge with Darcy–Forchheimer relation”, Micromachines, vol. 13(10), pp. 1768, 2022.
  • Khan, M. N., Ahammad, N. A., Ahmad, S., Elkotb, M. A., Tag-eldin, E., Guedri, K., … & Yassen, M. F. “Thermophysical features of Ellis hybrid nanofluid flow with surface-catalyzed reaction and irreversibility analysis subjected to porous cylindrical surface”, Front. Phys., pp. 795, 2022.
  • Alqarni, M. M., Bilal, M., Allogmany, R., Tag-Eldin, E., Ghoneim, M. E., & Yassen, M. F, “Mathematical analysis of Casson fluid flow with energy and mass transfer under the influence of activation energy from a non-coaxially spinning disc”, Front. Energy Res., vol. 10, 2022.
  • Haq, I., Bilal, M., Ahammad, N. A., Ghoneim, M. E., Ali, A., & Weera, W, “Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface”, ACS Omega, vol. 7(34), 30477–30485, 2022.
  • Mamatha, S. U., Devi, R. R., Ahammad, N. A., Shah, N. A., Rao, B. M., Raju, C. S. K., … & Guedri, K, “Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: lie group transformations”, Int. J. Mod. Phys. B, vol. 37(1), 2350007, 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.