Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
81
Views
1
CrossRef citations to date
0
Altmetric
Articles

Analysis of heat transfer and thin film flow of Au−Np over an unsteady radial stretching sheet

ORCID Icon &
Pages 1338-1351 | Received 22 Aug 2022, Accepted 27 Jan 2023, Published online: 06 Mar 2023

References

  • X. Wang, X. Xu, and S. U. S. Choi, “Thermal conductivity of nanoparticle-fluid Mixture.” [Online]. Available: https://doi.org/10.2514/2.6486. Accessed: May 27, 2021.
  • B. C. Sakiadis, “Boundary‐layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface,” AIChE J., vol. 7, no. 2, pp. 221–225, 1961. DOI: 10.1002/aic.690070211.
  • L. J. Crane, “Flow past a stretching plate,” Z. Angew. Math. Phys., vol. 21, no. 4, pp. 645–647, Jul. 1970. DOI: 10.1007/BF01587695.
  • L. E. Erickson, L. T. Fan, and V. G. Fox, “Heat and mass transfer on moving continuous flat plate with suction or injection,” Ind. Eng. Chem. Fundam., vol. 5, no. 1, pp. 19–25, Feb. 2002. DOI: 10.1021/i160017a004.
  • M. Fakour, A. Rahbari, E. Khodabandeh, and D. D. Ganji, “Nanofluid thin film flow and heat transfer over an unsteady stretching elastic sheet by LSM,” J. Mech. Sci. Technol., vol. 32, no. 1, pp. 177–183, 2018. DOI: 10.1007/s12206-017-1219-5.
  • J. Tawade, M. S. Abel, P. G. Metri, and A. Koti, “Thin film flow and heat transfer over an unsteady stretching sheet with thermal radiation, internal heating in presence of external magnetic field,” Int. J. Adv. Appl. Math. Mech. J., vol. 3, no. 4, pp. 29–40, 2016.
  • P. D. Ariel, “Axisymmetric flow due to a stretching sheet with partial slip,” Comput. Math. Appl., vol. 54, no. 7–8, pp. 1169–1183, 2007. DOI: 10.1016/j.camwa.2006.12.063.
  • H. Mirgolbabaei, D. Ganji, M. M. Etghani, and A. Sobati “Adapted variational iteration method and axisymmetric flow over a stretching sheet,” Citeseer. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.570.7662&rep=rep1&type=pdf. Accessed: Jul. 12, 2022.
  • B. Sahoo, “Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet,” Cent. Eur. J. Phys., vol. 8, no. 3, pp. 498–508, Jun. 2010. DOI: 10.2478/S11534-009-0105-X/HTML.
  • A. Shahzad and R. Ali, “On the exact solution for axisymmetric flow and heat transfer over a nonlinear radially stretching sheet.” 2012. [Online]. Available: https://doi.org/10.1088/0256-307X/29/8/084705/meta. Accessed: Jul. 12, 2022.
  • R. Ali, A. Shahzad, M. Khan, and M. Ayub, “Analytic and numerical solutions for axisymmetric flow with partial slip,” Eng. Comput., vol. 32, no. 1, pp. 149–154, Jun. 2015. DOI: 10.1007/s00366-015-0405-2.
  • A. S. Khan, Y. Nie, and Z. Shah, “Impact of thermal radiation on magnetohydrodynamic unsteady thin film flow of sisko fluid over a stretching surface,” Processes, vol. 7, no. 6, 2019. DOI: 10.3390/pr7060369.
  • K. Zaimi and A. Ishak, “Flow and heat transfer over a shrinking sheet in a nanofluid with suction at the boundary,” presented at the AIP Conf. Proc., vol. 1571, pp. 963–969, Malayasia, Dec. 2013. DOI: 10.1063/1.4858778.
  • F. Faraz, S. Haider, and S. M. Imran, “Study of magneto-hydrodynamics (MHD) impacts on an axisymmetric Casson nanofluid flow and heat transfer over unsteady radially stretching sheet,” SN Appl. Sci., vol. 2, no. 1, pp. 1–17, 2020. DOI: 10.1007/s42452-019-1785-5.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718, Feb. 2001. DOI: 10.1063/1.1341218.
  • Y. Jiang, X. Zhou, and Y. Wang, “Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble,” Microgravity Sci. Technol., vol. 32, no. 2, pp. 167–177, 2020. DOI: 10.1007/s12217-019-09757-z.
  • S. Masood, M. Farooq, and S. Ahmad, “Description of viscous dissipation in magnetohydrodynamic flow of nanofluid: Applications of biomedical treatment,” Adv. Mech. Eng., vol. 12, no. 6, 2020. DOI: 10.1177/1687814020926359.
  • K. Y. Leong et al., “Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach,” Int. Commun. Heat Mass Transf., vol. 90, pp. 23–28, Jan. 2018. DOI: 10.1016/j.icheatmasstransfer.2017.10.005.
  • M. A. Sadiq, “Heat transfer of a nanoliquid thin film over a stretching sheet with surface temperature and internal heat generation,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2075–2083, 2021. DOI: 10.1007/s10973-020-09614-x.
  • I. Mehdi, Z. Abbas, and J. Hasnain, “MHD flow and heat transfer between two rotating disks under the effects of nanomaterials (MoS2) and thermal radiation,” Case Stud. Therm. Eng., vol. 33, pp. 101968, May 2022. DOI: 10.1016/j.csite.2022.101968.
  • J. Hasnain and H. Satti “Study of double slip boundary condition on the oscillatory flow of dusty ferrofluid confined in a permeable channel.” [Online]. Available: http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/8346. Accessed: Oct. 26, 2022.
  • Z. Abbas and M. Jafar. “Asymptotic analysis of MHD viscous fluid flow due to a rotating disc and a radially stretching-shrinking disc with Navier slip condition.” 2019. [Online]. Available: https://doi.org/10.1088/1402-4896/ab41dd/meta. Accessed: Oct. 26, 2022.
  • S. Srinivas, A. Vijayalakshmi, and A. Subramanyam Reddy, “Flow and heat transfer of gold-blood nanofluid in a porous channel with moving/stationary walls,” J. Mech., vol. 33, no. 3, pp. 395–404, Jun. 2017. DOI: 10.1017/jmech.2016.102.
  • L. A. Lund et al., “Stability analysis and multiple solution of Cu-Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation,” J. Mater. Res. Technol., vol. 9, no. 1, pp. 421–432, 2020. DOI: 10.1016/j.jmrt.2019.10.071.
  • K. S. Mekheimer, W. M. Hasona, R. E. Abo-Elkhair, and A. Z. Zaher, “Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 382, no. 2–3, pp. 85–93, 2018. DOI: 10.1016/j.physleta.2017.10.042.
  • M. R. Eid, “Effects of NP shapes on non-Newtonian bio-nanofluid flow in suction/blowing process with convective condition: Sisko model,” J. Non-Equilib. Thermodyn., vol. 45, no. 2, pp. 97–108, 2020. DOI: 10.1515/jnet-2019-0073.
  • V. Sridhar, K. Ramesh, D. Tripathi, and V. Vivekanand, “Analysis of thermal radiation, Joule heating, and viscous dissipation effects on blood-gold couple stress nanofluid flow driven by electroosmosis,” Heat Transf., vol. 51, no. 5, pp. 4080–4101, 2022. DOI: 10.1002/htj.22490.
  • U. Rashid et al., “The shape effect of gold nanoparticles on squeezing nanofluid flow and heat transfer between parallel plates,” Math. Probl. Eng., vol. 2020, 2020. DOI: 10.1155/2020/9584854.
  • A. Shahzad et al., “Numerical study of axisymmetric flow and heat transfer in a liquid film over an unsteady radially stretching surface,” Math. Probl. Eng., vol. 2020, pp. 6737243, 2020. DOI: 10.1155/2020/6737243.
  • S. Vanaki and H. Mohammed, “Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts,” Elsevier, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167732214001007. Accessed: May 28, 2021.
  • M. R. Khan, M. Li, S. Mao, R. Ali, and S. Khan, “Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation,” Sci. Rep., no. 0123456789, pp. 1–14, 2021. DOI: 10.1038/s41598-021-81581-1.
  • R. L. Hamilton, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, Aug. 1962. DOI: 10.1021/i160003a005.
  • A. Wakif, Z. Boulahia, S. R. Mishra, M. Mehdi Rashidi, and R. Sehaqui, “Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model,” Eur. Phys. J. Plus, vol. 133, no. 5, 2018. DOI: 10.1140/epjp/i2018-12037-7.
  • E. V. Timofeeva, J. L. Routbort, and D. Singh, “Particle shape effects on thermophysical properties of alumina nanofluids,” J. Appl. Phys., vol. 106, no. 1, 2009. DOI: 10.1063/1.3155999.
  • L. F. Shampine and M. W. Reichelt, “Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c,” Tutorial Notes, vol. 75275, pp. 1–27, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.