Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparative analysis to examine the heat transmission enactment of hyperbolic tangent cylindrical flow: An application to PTSC

, , &
Pages 1368-1382 | Received 23 Aug 2022, Accepted 27 Jan 2023, Published online: 08 Mar 2023

References

  • U. Nazir et al., “Inclusion of hybrid nanoparticles in hyperbolic tangent material to explore thermal transportation via finite element approach engaging Cattaneo-Christov heat flux,” PLoS One, vol. 16, no. 8, pp. e0256302, 2021. DOI: 10.1371/journal.pone.0256302.
  • M. Khan, A. Rasheed, and T. Salahuddin, “Radiation and chemical reactive impact on tangent hyperbolic fluid flow having double stratification,” AIP Adv., vol. 10, no. 7, pp. 075211, 2020. DOI: 10.1063/5.0003717.
  • K. Ganesh Kumar et al., “Significance of Arrhenius activation energy in flow and heat transfer of tangent hyperbolic fluid with zero mass flux condition,” Microsyst. Technol., vol. 26, no. 8, pp. 2517–2526, 2020. DOI: 10.1007/s00542-020-04792-y.
  • A. Mukhopadhyay, S. Chattopadhyay, and A. K. Barua, “Stability of thin film flowing down the outer surface of a rotating non-uniformly heated vertical cylinder,” Nonlinear Dyn., vol. 100, no. 2, pp. 1143–1172, 2020. DOI: 10.1007/s11071-020-05558-x.
  • A. R. Ehman, Z. Salleh, and T. Gul, “Heat transfer of thin film flow over an unsteady stretching sheet with dynamic viscosity,” ARFMTS, vol. 81, no. 2, pp. 67–81, 2021. DOI: 10.37934/arfmts.81.2.6781.
  • Z. H. Khan, W. A. Khan, and M. Hamid, “Non-Newtonian fluid flow around a Y-shaped fin embedded in a square cavity,” J. Therm. Anal. Calorim., vol. 143, no. 1, pp. 573–585, 2021. DOI: 10.1007/s10973-019-09201-9.
  • H. A. Wahab et al., “Numerical study for the effects of temperature dependent viscosity flow of non-Newtonian fluid with double stratification,” Appl. Sci., vol. 10, no. 2, pp. 708, 2020. DOI: 10.3390/app10020708.
  • K. Anantha Kumar, N. Sandeep, V. Sugunamma, and I. L. Animasaun, “Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2145–2153, 2020. DOI: 10.1007/s10973-019-08628-4.
  • C. Ma et al., “Effect of slip on the contact-line instability of a thin liquid film flowing down a cylinder,” APS, vol. 101, no. 5, pp. 53108, 2020. DOI: 10.1103/PhysRevE.101.053108.
  • Parabolic trough reflector for solar thermal system. [Online]. Available: http://www.alternative-energytutorials.com/solar-hot-water/parabolic-trough-reflector.html
  • P. P. Gharami et al., “MHD effect on unsteady flow of tangent hyperbolic nano-fluid past a moving cylinder with chemical reaction,” SN Appl. Sci., vol. 2, no. 7, 2020. DOI: 10.1007/s42452-020-3048-x.
  • F. Mabood, T. Muhammad, M. K. Nayak, H. Waqas, and O. D. Makinde, “EMHD flow of non-Newtonian nanofluids over thin needle with Robinson’s condition and Arrhenius pre-exponential factor law,” Phys. Scr., vol. 95, no. 11, pp. 115219, 2020. DOI: 10.1088/1402-4896/abc0c3.
  • H. R. Marasi, M. Daneshbastam, and A. Alizadeh, “Analytic investigation of steady thin film flow of non-newtonian fluid on vertical cylinder for lifting and drainage problems,” TWMS J. App. Eng. Math., vol. 2021, pp. 975–987, 2021.
  • S. Saranya and Q. M. Al-Mdallal, “Non-Newtonian ferrofluid flow over an unsteady contracting cylinder under the influence of aligned magnetic field,” Case Stud. Therm. Eng., vol. 21, pp. 100679, 2020. DOI: 10.1016/j.csite.2020.100679.
  • M. A. Sadiq, “The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1261–1272, 2021. DOI: 10.1007/s10973-020-09761-1.
  • A. Rizwan, I. Ahmad, M. A. Z. Raja, and M. Shoaib, “Design of spline–evolutionary computing paradigm for nonlinear thin film flow model,” Arab. J. Sci. Eng., vol. 46, no. 9, pp. 9279–9299, 2021. DOI: 10.1007/S13369-021-05830-1.
  • M. Khan, T. Salahuddin, M. Y. Malik, M. S. Alqarni, and A. M. Alqahtani, “Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution,” Phys. A: Stat. Mech. Appl., vol. 553, pp. 124231, 2020. DOI: 10.1016/j.physa.2020.124231.
  • A. Tassaddiq et al., “Thin film flow of couple stress magneto-hydrodynamics nanofluid with convective heat over an inclined exponentially rotating stretched surface,” Coatings, vol. 10, no. 4, pp. 338, 2020. DOI: 10.3390/coatings10040338.
  • Z. Ullah, G. Zaman, and A. Ishak, “Magnetohydrodynamic tangent hyperbolic fluid flow past a stretching sheet,” Chin. J. Phys., vol. 66, pp. 258–268, 2020. DOI: 10.1016/j.cjph.2020.04.011.
  • S. Islam, A. Dawar, Z. Shah, and A. Tariq, “Cattaneo–Christov theory for a time-dependent magnetohydrodynamic Maxwell fluid flow through a stretching cylinder,” Adv. Mech. Eng., vol. 13, no. 7, pp. 1–11, 2021. DOI: 10.1177/16878140211030152.
  • A. H. Usman, N. Saeed Khan, S. A. Rano, U. W. Humphries, and P. Kumam, “Computational investigations of Arrhenius activation energy and entropy generation in a viscoelastic nanofluid flow thin film sprayed on a stretching cylinder,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 86, no. 1, pp. 27–51, 2021. DOI: 10.37934/arfmts.86.1.2751.
  • S. Khaliq and Z. Abbas, “Analysis of calendering process of non-isothermal flow of non-Newtonian fluid: A perturbative and numerical study,” J. Plast. Film Sheeting, vol. 37, no. 3, pp. 338–366, 2021. DOI: 10.1177/8756087920979024.
  • S. Nandi and B. Kumbhakar, “Viscous dissipation and chemical reaction effects on tangent hyperbolic nanofluid flow past a stretching wedge with convective heating and Navier’s slip conditions,” Iran. J. Sci. Technol. - Trans. Mech. Eng., vol. 46, pp. 379–397, 2021. DOI: 10.1007/S40997-021-00437-1.
  • N. El-Dabe, M. Y. Abou-Zeid, and S. Ahmed, “Motion of a thin film of a fourth grade nanofluid with heat transfer down a vertical cylinder: Homotopy perturbation method application,” Adv. Res. Fluid Mech. Therm. Sci., vol. 66, no. 2, pp. 101–113, 2020.
  • N. Sandeep and G. P. Ashwinkumar, “Impact of nanoparticle shape on magnetohydrodynamic stagnation-point flow of Carreau nanoliquid: A comparative study,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 236, no. 3, pp. 1004–1012, 2022. DOI: 10.1177/09544089211058427.
  • N. S. Khan et al., “Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer,” Appl. Sci., vol. 7, no. 3, pp. 271, 2017. DOI: 10.3390/app7030271.
  • T. Hayat, A. Shafiq, and A. Alsaedi, “MHD axisymmetric flow of third-grade fluid by a stretching cylinder,” Alex. Eng. J., vol. 54, no. 2, pp. 205–212, 2015. DOI: 10.1016/j.aej.2015.03.013.
  • G. Rasool et al., “Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface,” Entropy, vol. 22, no. 1, pp. 18, 2019. DOI: 10.3390/e22010018G.
  • G. Rasool et al., “Entropy generation and consequences of MHD in Darcy–Forchheimer nanofluid flow bounded by non-linearly stretching surface,” Symmetry, vol. 12, no. 4, pp. 652, 2020. DOI: 10.3390/sym12040652.
  • A. B. Çolak, A. Shafiq, and T. N. Sindhu, “Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network,” Chin. J. Phys., vol. 77, pp. 2435–2453, 2022. DOI: 10.1016/j.cjph.2022.04.004.
  • T. Hayat, A. Shafiq, A. Alsaedi, and S. A. Shahzad, “Unsteady MHD flow over an exponentially stretching sheet with slip conditions,” Appl. Math. Mech.-Engl. Ed., vol. 37, no. 2, pp. 193–208, 2016. DOI: 10.1007/s10483-016-2024-8.
  • L. Ali, X. Liu, B. Ali, S. Mujeed, and S. Abdal, “Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions,” Coatings, vol. 9, no. 12, pp. 842, 2019. DOI: 10.3390/coatings9120842.
  • L. Ali, Y. J. Wu, B. Ali, S. Abdal, and S. Hussain, “The crucial features of aggregation in TiO2-water nanofluid aligned of chemically comprising microorganisms: A FEM approach,” Comput. Math. Appl., vol. 123, pp. 241–251, 2022. DOI: 10.1016/j.camwa.2022.08.028.
  • L. Ali, B. Ali, and M. Bilal Ghori, “Melting effect on Cattaneo–Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach,” Comput. Math. Appl., vol. 109, pp. 260–269, 2022. DOI: 10.1016/j.camwa.2022.01.009.
  • L. Ali et al., “A comparative study of unsteady MHD Falkner–Skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy,” Chin. J. Phys., vol. 77, pp. 1625–1638, 2022. DOI: 10.1016/j.cjph.2021.10.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.