Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 12
1,243
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical study on dynamic performance of low temperature recuperator in a S-CO2 Brayton cycle

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1436-1458 | Received 09 Sep 2022, Accepted 30 Jan 2023, Published online: 27 Feb 2023

References

  • M. Li, H. Zhu, J. Guo, K. Wang, and W. Tao, “The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries,” Appl. Thermal Eng., vol. 126, pp. 255–275, 2017. /11/05/2017, doi: 10.1016/j.applthermaleng.2017.07.173.
  • W. Bai et al., “Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant,” Energy, vol. 222, pp. 119976, 2021. DOI: 10.1016/j.energy.2021.119976.
  • J. Hidalgo-Salaverri, P. Cano-Megias, R. Chacartegui, J. Ayllon-Guerola, and E. Viezzer, “Analysis of supercritical carbon dioxide Brayton cycles for a helium-cooled pebble bed blanket DEMO-like fusion power plant,” Fusion Engineering Design, vol. 173, pp. 112860, 2021. DOI: 10.1016/j.fusengdes.2021.112860.
  • E. Ruiz-Casanova, C. Rubio-Maya, J. J. Pacheco-Ibarra, V. M. Ambriz-Diaz, C. E. Romero, and X. Wang, “Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources,” Energy Convers. Manage, vol. 216, Jul 15 2020. Art no. 112978, DOI: 10.1016/j.enconman.2020.112978.
  • Y. Yang, Y. Lu, H. Wei, Y. Wu, and Q. Gao, “Numerical study of thermal-hydraulic performance of sCO2-molten salt printed circuit heat exchanger with discontinuous fins channel,” Numerical Heat Transfer, Part A: Applicat., pp. 1–21, 2022. DOI: 10.1080/10407782.2022.2105113.
  • T. D. Luz, F. G. Battisti, and A. K. Da Silva, “A numerical study of supercritical carbon dioxide as a medium for thermal energy storage applications under natural convection,” Numerical Heat Transfer, Part A: Applicat., vol. 81, no. 3-6, pp. 49–71, 2022. DOI: 10.1080/10407782.2021.1969812.
  • M. Qiao, Z. Jing, X. Ma, S. Wang, and D. Xu, “Thermal–hydraulic characteristics and structure optimization of Z-channel printed circuit heat exchanger,” Numerical Heat Transfer, Part A: Applicat., pp. 1–21, 2022. DOI: 10.1080/10407782.2022.2105111.
  • T. Zhang and D. Che, “Lattice Boltzmann simulation of natural convection in an inclined square cavity with spatial temperature variation,” Numerical Heat Transfer, Part A: Applicat., vol. 66, no. 6, pp. 712–732, 2014. DOI: 10.1080/10407782.2014.894408.
  • K. Cheng, J. Zhou, H. Zhang, X. Huai, and J. Guo, “Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle,” Appl. Thermal Eng., vol. 171, pp. 115116, 2020. DOI: 10.1016/j.applthermaleng.2020.115116.
  • F. Zhang, Y. Zhu, C. Li, and P. Jiang, “Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching,” Energy, vol. 151, pp. 376–386, 2018. DOI: 10.1016/j.energy.2018.03.009.
  • F. Jacob, A. Rolt, J. Sebastiampillai, V. Sethi, M. Belmonte, and P. Cobas, “Performance of a supercritical CO2 bottoming cycle for aero applications,” Appl. Sci., vol. 7, no. 3, pp. 255, 2017. DOI: 10.3390/app7030255.
  • V. Ladislav, D. Vaclav, B. Ondrej, and N. Vaclav, “Pinch point analysis of heat exchangers for supercritical carbon dioxide with gaseous admixtures in CCS systems,” Energy Procedia, vol. 86, pp. 489–499, 2016. DOI: 10.1016/j.egypro.2016.01.050.
  • S. Son, J. Y. Heo, and J. I. Lee, “Prediction of inner pinch for supercritical CO2 heat exchanger using Artificial Neural Network and evaluation of its impact on cycle design,” Energy Convers. Manage., vol. 163, pp. 66–73, 2018. DOI: 10.1016/j.enconman.2018.02.044.
  • S. Kim, Y. Cho, M. S. Kim, and M. Kim, “Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators,” Energy, vol. 147, pp. 1216–1226, 2018. DOI: 10.1016/j.energy.2017.12.161.
  • N. Bartel et al., “Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors,” Ann. Nucl. Energy, vol. 81, pp. 143–149, 2015. DOI: 10.1016/j.anucene.2015.03.029.
  • W. Chu, X. Li, T. Ma, Y. Chen, and Q. Wang, “Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels,” Int. J. Heat Mass Transfer., vol. 113, pp. 184–194, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.059.
  • W. Chu, X. Li, T. Ma, Y. Chen, and Q. Wang, “Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins,” Appl. Thermal Engineering, vol. 114, pp. 1309–1318, 2017. /03/05/2017, DOI: 10.1016/j.applthermaleng.2016.11.187.
  • W. Wang, Y. Qiu, Y. He, and H. Shi, “Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power,” Int. J. Heat Mass Transfer, vol. 135, pp. 837–846, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.012.
  • X. Bian et al., “A comprehensive evaluation of the effect of different control valves on the dynamic performance of a recompression supercritical CO2 Brayton cycle,” Energy, vol. 248, pp. 123630, 2022. DOI: 10.1016/j.energy.2022.123630.
  • E. Liese, J. Albright, and S. A. Zitney, “Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle,” Appl. Energy, vol. 277, pp. 115628, 2020. DOI: 10.1016/j.apenergy.2020.115628.
  • J. Yang, Z. Yang, and Y. Duan, “Part-load performance analysis and comparison of supercritical CO2 Brayton cycles,” Energy Convers. Manage., vol. 214, pp. 112832, 2020. /06/15/2020, DOI: 10.1016/j.enconman.2020.112832.
  • T. Ma, M. Li, J. Xu, J. Ni, W. Tao, and L. Wang, “Study of dynamic response characteristics of S-CO2 cycle in coal-fired power plants based on real-time micro-grid load and a novel synergistic control method with variable working conditions,” Energy Convers. Manage., vol. 254, pp. 115264, 2022. DOI: 10.1016/j.enconman.2022.115264.
  • Y. Jiang, E. Liese, S. E. Zitney, and D. Bhattacharyya, “Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles,” Appl. Energy, vol. 231, pp. 1019–1032, 2018. DOI: 10.1016/j.apenergy.2018.09.193.
  • K. Chen, W. Pu, Q. Zhang, B. Lan, Z. Song, and Y. Mao, “Thermal performance analysis on steady-state and dynamic response characteristic in solar tower power plant based on supercritical carbon dioxide Brayton cycle,” Energy Source Part A: Recov. Utiliz. Environ. Effects, pp. 1–23, 2020. DOI: 10.1080/15567036.2020.1838001.
  • T. Ma, M. Li, J. Xu, and F. Cao, “Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant,” Energy, vol. 175, pp. 123–138, 2019. DOI: 10.1016/j.energy.2019.03.082.
  • Y. Zhang, H. Li, M. Yao, and Y. Wang, “Conceptual design of the recuperator and precooler for a 600MW fossil-based supercritical CO2 power generation system,” Proc. CSEE, vol. 37, no. 24, pp. 7223–7229, 2017. DOI: 10.13334/j.0258-8013.pcsee.162449.(in Chinese)
  • J. Zhou et al., “Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant,” Energy Convers. Manage., vol. 173, pp. 348–358, Oct 1 2018. DOI: 10.1016/j.enconman.2018.07.096.
  • W. Wang, Z. Hunag, S. Zhao, C. Chen, and Z. Yao, “Simulation research on thermodynamic performance of supercritical carbon dioxide 600 MW coal-fired power system,” Thermal Power Generation, vol. 49, no. 10, pp. 101–106, 2020. (in Chinese)
  • W. Bai, Y. Zhang, Y. Yang, H. Li, and M. Yao, “300 MW boiler design study for coal-fired supercritical CO2 Brayton cycle,” Appl. Thermal Eng., vol. 135, pp. 66–73, 2018. DOI: 10.1016/j.applthermaleng.2018.01.110.
  • H. Li et al., “Preliminary design assessment of supercritical CO2 cycle for commercial scale coal-fired power plants,” Appl. Thermal Eng., vol. 158, pp. 113785, 2019. DOI: 10.1016/j.applthermaleng.2019.113785.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, no. 2, pp. 10, 1976.
  • T. K. Serghides, “Estimate friction factor accurately,” Chem. Eng., vol. 91, pp. 63–64, 1984.
  • M. Marchionni, L. Chai, G. Bianchi and S. A. Tassou, “Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems,” Appl. Thermal Engineering, vol. 161, pp. 114190, 2019. DOI: 10.1016/j.applthermaleng.2019.114190.
  • W. Wang, R. Cai, and N. Zhang, “General characteristics of single shaft microturbine set at variable speed operation and its optimization,” Appl. Thermal Eng., vol. 24, no. 13, pp. 1851–1863, 2004. DOI: 10.1016/j.applthermaleng.2003.12.012.
  • N. Zhang and R. Cai, “Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration,” Energy Convers. Manage, vol. 43, no. 9, pp. 1323–1337, 2002. DOI: 10.1016/S0196-8904(02)00018-3.
  • H. H. Weiss and L. Boswirth, “A simple but efficient equipment for experimental determination of valve loss coefficients under compressible and steady flow conditions,” presented at the International Compressor Engineering Conference, 1982, pp. 374.
  • T. L. Bergman, A. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer. Hoboken, NJ, USA: Wiley, 2011.