Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 12
159
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical simulations of frost growth using mixture model on surfaces with different wettability

, &
Pages 1494-1517 | Received 19 Aug 2022, Accepted 30 Jan 2023, Published online: 28 Apr 2023

References

  • Y. Shen and X. Wang, “Real-time frost porosity detection using capacitance sensing approach,” Int. J. Heat Mass Transf., vol. 134, pp. 1171–1179, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.060.
  • Y. Shen and S. Wang, “Condensation frosting detection and characterization using a capacitance sensing approach,” Int. J. Heat Mass Transf., vol. 147, pp. 118968, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118968.
  • Y. Shen, H. Zou, and S. Wang, “Condensation frosting on micropillar surfaces–effect of microscale roughness on ice propagation,” Langmuir, vol. 36, no. 45, pp. 13563–13574, 2020. DOI: 10.1021/acs.langmuir.0c02353.s002.
  • Kandula, M., “Frost growth and densification in laminar flow over flat surfaces,” Int. J. Heat Mass Transf., vol. 54, no. 1516, pp. 3719–3731, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.056.
  • C. J. Hermes, R. O. Piucco, J. R. Barbosa Jr., and C. Melo, “A study of frost growth and densification on flat surfaces,” Exp. Therm. Fluid Sci., vol. 33, no. 2, pp. 371–379, 2009. DOI: 10.1016/j.expthermflusci.2008.10.006.
  • R. Yun, Y. Kim, and M-k Min, “Modeling of frost growth and frost properties with airflow over a flat plate,” Int. J. Refrig., vol. 25, no. 3, pp. 362–371, 2002. DOI: 10.1016/s0140-7007(01)00026-3.
  • K. F. Rabbi et al., “Wettability-defined frosting dynamics between plane fins in quiescent air,” Int. J. Heat Mass Transf., vol. 164, pp. 120563, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120563.
  • N. Wang et al., “Design and fabrication of the lyophobic slippery surface and its application in anti-icing,” J. Phys. Chem. C, vol. 120, no. 20, pp. 11054–11059, 2016. DOI: 10.1021/acs.jpcc.6b04778.
  • B. Liu et al., “Strategies for anti-icing: Low surface energy or liquid-infused?” RSC Adv., vol. 6, no. 74, pp. 70251–70260, 2016. DOI: 10.1039/C6RA11383D.
  • F. Chu, D. Wen, and X. Wu, “Frost self-removal mechanism during defrosting on vertical superhydrophobic surfaces: Peeling off or jumping off,” Langmuir, vol. 34, no. 48, pp. 14562–14569, 2018. DOI: 10.1021/acs.langmuir.8b03347.
  • C.-H. Cheng and K.-H. Wu, “Observations of early-stage frost formation on a cold plate in atmospheric air flow,” J. Heat Transf., vol. 125, no. 1, pp. 95–102, 2003. DOI: 10.1115/1.1513576.
  • K.-S. Lee, S. Jhee, and D.-K. Yang, “Prediction of the frost formation on a cold flat surface,” Int. J. Heat Mass Transf., vol. 46, no. 20, pp. 3789–3796, 2003. DOI: 10.1016/S0017-9310(03)00195-9.
  • S. Niroomand, M. Fauchoux, and C. Simonson, “Experimental characterization of frost growth on a horizontal plate under natural convection,” J. Therm. Sci. Eng. Appl., vol. 11, no. 1, pp. 011020, 2019. DOI: 10.1115/1.4040989.
  • G. Chen, X. Deng, G. Zhang, and X. Yan, “Simulation of frost growth and densification on horizontal plates with supersaturated interface condition,” Int. J. Heat Mass Transf., vol. 133, pp. 426–434, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.133.
  • D.-K. Yang and K.-S. Lee, “Modeling of frosting behavior on a cold plate,” Int. J. Refrig., vol. 28, no. 3, pp. 396–402, 2005. DOI: 10.1016/j.ijrefrig.2004.08.001.
  • J. Cui, W. Li, Y. Liu, and Z. Jiang, “A new time-and space-dependent model for predicting frost formation,” Appl. Therm. Eng., vol. 31, no. 4, pp. 447–457, 2011. DOI: 10.1016/j.applthermaleng.2010.09.022.
  • X. Wu, Q. Ma, F. Chu, and S. Hu, “Phase change mass transfer model for frost growth and densification,” Int. J. Heat Mass Transf., vol. 96, pp. 11–19, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.018.
  • X. Wu, F. Chu, and Q. Ma, “Frosting model based on phase change driving force,” Int. J. Heat Mass Transf., vol. 110, pp. 760–767, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.081.
  • J. Cui, W. Li, Y. Liu, and Y. Zhao, “A new model for predicting performance of fin-and-tube heat exchanger under frost condition,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 249–260, 2011. DOI: 10.1016/j.ijheatfluidflow.2010.11.004.
  • F. R. Loyola, V. S. Nascimento Jr., and C. J. Hermes, “Modeling of frost build-up on parallel-plate channels under supersaturated air-frost interface conditions,” Int. J. Heat Mass Transf., vol. 79, pp. 790–795, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.055.
  • A. E. Cheikh and A. Jacobi, “A mathematical model for frost growth and densification on flat surfaces,” Int. J. Heat Mass Transf., vol. 77, pp. 604–611, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.054.
  • D. Kim, C. Kim, and K.-S. Lee, “Frosting model for predicting macroscopic and local frost behaviors on a cold plate,” Int. J. Heat Mass Transf., vol. 82, pp. 135–142, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.048.
  • J. Armengol, C. T. Salinas, J. Xaman, and K. A. R. Ismail, “Modeling of frost formation over parallel cold plates considering a two-dimensional growth rate,” Int. J. Therm. Sci., vol. 104, pp. 245–256, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.017.
  • S. Shahane et al., “Finite volume simulation framework for die casting with uncertainty quantification,” Appl. Math. Model., vol. 74, pp. 132–150, 2019. DOI: 10.1016/j.apm.2019.04.045.
  • S. S. Shahane, “Numerical simulations of die casting with uncertainty quantification and optimization using neural networks,” Ph.D. dissertation, Dept. Mech. & Sci, Eng., UIUC, Champaign, IL, USA, 2019.
  • W. Bennon and F. Incropera, “A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation,” Int. J. Heat Mass Transf., vol. 30, no. 10, pp. 2161–2170, 1987. DOI: 10.1016/0017-9310(87)90094-9.
  • A. Plotkowski, K. Fezi, and M. Krane, “Estimation of transient heat transfer and fluid flow for alloy solidification in a rectangular cavity with an isothermal sidewall,” J. Fluid Mech., vol. 779, pp. 53–86, 2015. DOI: 10.1017/jfm.2015.424.
  • V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transf, vol. 30, no. 8, pp. 1709–1719, 1987. DOI: 10.1016/0017-9310(87)90317-6.
  • E. Bartrons, P. A. Galione, and C. D. Pérez-Segarra, “Fixed grid numerical modelling of frost growth and densification,” Int. J. Heat Mass Transf., vol. 130, pp. 215–229, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.080.
  • X. Yue, W. Liu, and Y. Wang, “Freezing delay, frost accumulation and droplets condensation properties of micro-or hierarchically-structured silicon surfaces,” Int. J. Heat Mass Transf., vol. 126, pp. 442–451, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.165.
  • A. E. Cheikh, “The effect of surface wettability on frost growth and densification on flat plates,” Ph.D. dissertation, Dept. Mech. & Sci, Eng., UIUC, Champaign, IL, USA, 2013.
  • L. Huang, Z. Liu, Y. Liu, and Y. Gou, “Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil,” Int. J. Therm. Sci., vol. 50, no. 4, pp. 432–439, 2011. DOI: 10.1016/j.ijthermalsci.2010.11.011.
  • Z. Liu, Y. Gou, J. Wang, and S. Cheng, “Frost formation on a super-hydrophobic surface under natural convection conditions,” Int. J. Heat Mass Transf., vol. 51, no. 2526, pp. 5975–5982, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.03.026.
  • A. D. Sommers, C. W. Gebhart, and C. J. Hermes, “The role of surface wettability on natural convection frosting: Frost growth data and a new correlation for hydrophilic and hydrophobic surfaces,” Int. J. Heat Mass Transf., vol. 122, pp. 78–88, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.074.
  • L. Cai, R. Wang, P. Hou, and X. Zhang, “Study on restraining frost growth at initial stage by hydrophobic coating and hygroscopic coating,” Energy Build, vol. 43, no. 5, pp. 1159–1163, 2011. DOI: 10.1016/j.enbuild.2010.09.012.
  • F. Wang et al., “Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers,” Appl. Therm. Eng., vol. 75, pp. 1126–1132, 2015. DOI: 10.1016/j.applthermaleng.2014.10.090.
  • A. D. Sommers et al., “Densification of frost on hydrophilic and hydrophobic substrates–Examining the effect of surface wettability," Exp. Therm. Fluid Sci., vol. 75, pp. 25–34, 2016. DOI: 10.1016/j.expthermflusci.2016.01.008.
  • J. Liu et al., “Distinct ice patterns on solid surfaces with various wettabilities,” Proc. Natl. Acad. Sci. USA, vol. 114, no. 43, pp. 11285–11290, 2017. DOI: 10.1073/pnas.1712829114.
  • M. Volmer and Α. Weber, “Keimbildung in übersättigten Gebilden,” Z. Phys. Chem., vol. 119, no. 1, pp. 277–301, 1926. DOI: 10.1515/zpch-1926-11927.
  • J. Wölk and R. Strey, “Homogeneous nucleation of H2O and D2O in comparison: The isotope effect,” J. Phys. Chem. B, vol. 105, no. 47, pp. 11683–11701, 2001. DOI: 10.1021/jp0115805.
  • R. Becker and W. Döring, “Kinetische Behandlung der Keimbildung in übersättigten Dämpfen," Ann. Phys., vol. 416, pp. 719–752, Jan. 1935. DOI: 10.1002/andp.19354160806.
  • M. Volmer, "Kinetics of phase formation (kinetik der phasenbildung)," Foreign Technology DIV Wright-Pattersonafb OH, USA. [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA800534.pdf. Accessed: Oct. 21, 2020.
  • S. Twomey, “Experimental test of the Volmer theory of heterogeneous nucleation,” J. Chem. Phys., vol. 30, no. 4, pp. 941–943, 1959. DOI: 10.1063/1.1730131.
  • W. Xu et al., “Heterogeneous nucleation capability of conical microstructures for water droplets,” RSC Adv., vol. 5, no. 2, pp. 812–818, 2015. DOI: 10.1039/C4RA12352B.
  • K. K. Varanasi et al., “Spatial control in the heterogeneous nucleation of water,” Appl. Phys. Lett., vol. 95, no. 9, pp. 094101, 2009. DOI: 10.1063/1.3200951.
  • F. H. Harlow and A. A. Amsden, “Numerical calculation of multiphase fluid flow,” J. Comput. Phys., vol. 17, no. 1, pp. 19–52, 1975. DOI: 10.1016/0021-9991(75)90061-3.
  • R. L. Gall, J. Grillot, and C. Jallut, “Modelling of frost growth and densification,” Int. J. Heat Mass Transf., vol. 40, no. 13, pp. 3177–3187, 1997. DOI: 10.1016/S0017-9310(96)00359-6.
  • E. Bartrons et al., “A finite volume method to solve the frost growth using dynamic meshes,” Int. J. Heat Mass Transf., vol. 124, pp. 615–628, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.104.
  • E. R. Eckert and R. M. Drake Jr., Analysis of Heat and Mass Transfer. Boca Raton, FL: CRC Press, 1987.
  • D. R. Lide, Handbook of Organic Solvents. Boca Raton, FL: CRC Press, 1994.
  • T. E. Fessler, WETAIR: A Computer Code for Calculating Thermodynamic and Transport Properties of Air-Water Mixtures. Washington, D.C.: National Aeronautics and Space Administration, 1979.
  • E. L. Studnikov, “The viscosity of moist air,” J. Eng. Phys., vol. 19, pp. 1036–1037, 1970. DOI: 10.1007/bf00828786.
  • B. Na and R. L. Webb, “New model for frost growth rate,” Int. J. Heat Mass Transf., vol. 47, no. 5, pp. 925–936, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.09.001.
  • C. T. Sanders, “The influence of frost formation and defrosting on the performance of air coolers,” Ph.D. thesis, Technische Hogeschool, Delft, NL, 1947.
  • Y. A. Çengel, Introduction to Thermodynamics and Heat Transfer. New York: McGraw-Hill, 2008.
  • V. Teske, E. Vogel, and E. Bich, “Viscosity measurements on water vapor and their evaluation,” J. Chem. Eng. Data, vol. 50, no. 6, pp. 2082–2087, 2005. DOI: 10.1021/je050288d.
  • A. Harvey, Properties of Ice and Supercooled Water. Gaithersburg, MD: National Insistute of Standards and Technology. [Online]. Available: https://www.nist.gov/publications/properties-ice-and-supercooled-water.
  • K. Tockner and G. E. Likens, Encyclopedia of Inland Waters. Stechlin, Germany: AP, 2009.
  • E. Lemmon, Properties of Ice and Supercooled Water. Boca Raton, FL: CRC handb. Chem. Phys., 2016, pp. 6–16.
  • D. Lide, Thermal Conductivity of Saturated h2o and d2o. Boca Raton, FL: CRC handb. Chem. Phys., 2005.
  • D. Beysens, “Dew nucleation and growth,” C. R. Phys., vol. 7, pp. 1082–1100, 2006. DOI: 10.1016/j.crhy.2006.10.020.
  • X. Liu, “ Heterogeneous nucleation or homogeneous nucleation?” Chem. Phys., vol. 112, no. 22, pp. 9949–9955, 2000. DOI: 10.1063/1.481644.
  • M. Iwamatsu, “Heterogeneous critical nucleation on a completely wettable substrate,” Chem. Phys., vol. 134, no. 23, pp. 234709, 2011. DOI: 10.1063/1.3599710.
  • N. Gupta and S. Ghosh, “A report on the wilson cloud chamber and its applications in physics,” RMP, vol. 18, no. 2, pp. 225, 1946. DOI: 10.1103/RevModPhys.18.225.
  • C. Knight’'Experiments, “On the contact angle of water on ice,” Philos. Mag., vol. 23, no. 181, pp. 153–165, 1971. DOI: 10.1080/14786437108216369.
  • F. H. Harlow and J. E. Welch, “Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids, vol. 8, no. 12, pp. 2182–2189, 1965. DOI: 10.1063/1.1761178.
  • ASHRAE Handbook. HVAC Systems and Equipment. Atlanta, GA: ASHARE, SI edition, 1996.
  • J.-T. Kwon et al., “An experimental study on frosting of laminar air flow on a cold surface with local cooling,” Int. J. Refrig., vol. 29, no. 5, pp. 754–760, 2006. DOI: 10.1016/j.ijrefrig.2005.12.009.
  • C. Geuzaine and J. F. Remacle, “Gmsh: A 3‐D finite element mesh generator with built‐in pre‐and post‐processing facilities,” Int. J. Numer. Methods Eng., vol. 79, no. 11, pp. 1309–1331, 2009. DOI: 10.1002/nme.2579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.