Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
259
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Microscopic mechanism of effects of nanostructure morphology on bubble nucleation: A molecular dynamics simulation

, &
Pages 187-202 | Received 19 Aug 2022, Accepted 08 Feb 2023, Published online: 16 Mar 2023

References

  • J. Wang, “Preliminary analysis of rapid boiling heat transfer,” Int. Commun. Heat Mass Transf., vol. 27, no. 3, pp. 377–388, Apr. 2000. DOI: 10.1016/S0735-1933(00)00118-4.
  • D. G. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” J. Heat Transfer, vol. 124, no. 2, pp. 223–241, Apr. 2002. DOI: 10.1115/1.1454111.
  • Q. Cao et al., “The effect of foreign particles on liquid film evaporation at the nanoscale: A molecular dynamics simulation,” J. Mol. Liq., vol. 319, pp. 114218, Dec. 2020. DOI: 10.1016/j.molliq.2020.114218.
  • S. Zeroual et al., “Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: Effects of nanoparticle content, temperature and potential interaction,” J. Mol. Liq., vol. 268, pp. 490–496, Oct. 2018. DOI: 10.1016/j.molliq.2018.07.090.
  • T. Fu, Y. Mao, Y. Tang, Y. Zhang, and W. Yuan, “Effect of nanostructure on rapid boiling of water on a hot copper plate: A molecular dynamics study,” Heat Mass Transf., vol. 52, no. 8, pp. 1469–1478, Aug. 2016. DOI: 10.1007/s00231-015-1668-2.
  • T. Fu, Y. Mao, Y. Tang, Y. Zhang, and W. Yuan, “Molecular dynamics simulation on rapid boiling of thin water films on cone-shaped nanostructure surfaces,” Nanoscale Microscale Thermophys. Eng., vol. 19, no. 1, pp. 17–30, Feb. 2015. DOI: 10.1080/15567265.2014.991480.
  • Y. Chen, Y. Zou, Y. Wang, D. Han, and B. Yu, “Bubble nucleation on various surfaces with inhomogeneous interface wettability based on molecular dynamics simulation,” Int. Commun. Heat Mass Transf., vol. 98, pp. 135–142, Nov. 2018. DOI: 10.1016/j.icheatmasstransfer.2018.08.017.
  • Y. Chen, Z. Yu, D. Sun, W. Yi, and Y. Bo, “Molecular dynamics simulation of bubble nucleation on nanostructure surface,” Int. J. Heat Mass Transf., vol. 118, pp. 1143–1151, Mar. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.079.
  • H. R. Seyf and Y. Zhang, “Molecular dynamics simulation of normal and explosive boiling on nanostructured surface,” J. Heat Transfer, vol. 135, no. 12, pp. 391–398, Dec. 2013. DOI: 10.1115/1.4024668.
  • H. R. Seyf and Y. Zhang, “Effect of nanotextured array of conical features on explosive boiling over a flat substrate: A nonequilibrium molecular dynamics study,” Int. J. Heat Mass Transf., vol. 66, pp. 613–624, Nov. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.025.
  • P. Zhang, L. Zhou, L. Jin, H. Zhao, and X. Du, “Effect of nanostructures on rapid boiling of water films: A comparative study by molecular dynamics simulation,” Appl. Phys. A, vol. 125, no. 2, pp. 142, 2019. Feb. DOI: 10.1007/s00339-019-2453-8.
  • P. Bai, L. Zhou, and X. Du, “Molecular dynamics simulation of the roles of roughness ratio and surface potential energy in explosive boiling,” J. Mol. Liq., vol. 335, pp. 116169, Aug. 2021. DOI: 10.1016/j.molliq.2021.116169.
  • R. Liu and Z. Liu, “Study of boiling heat transfer on concave hemispherical nanostructure surface with MD simulation,” Int. J. Heat Mass Transf., vol. 143, pp. 118534, Nov. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118534.
  • D. Zhang, S. Li, J. Zhou, H. Tian, and S. Tang, “Effect of nanostructure on explosive boiling of thin liquid water film on a hot copper surface: A molecular dynamics study,” Mol. Simul., vol. 48, no. 3, pp. 221–230, Nov. 2022. DOI: 10.1080/08927022.2021.2007909.
  • S. Shang, M. Zarringhalam, D. Toghraie, and A. Alizadeh, “Molecular dynamics simulation of argon flow in large scale within different microchannels under phase change condition,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105337, Jul. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105337.
  • R. Diaz and Z. Guo, “Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer,” Numer. Heat Transf. Part A, vol. 72, no. 12, pp. 891–903, Dec. 2017. DOI: 10.1080/10407782.2017.1412710.
  • L. G. Macdowell, V. K. Shen, and J. R. Errington, “Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems,” J. Chem. Phys., vol. 125, no. 3, pp. 34705, Jul. 2006. DOI: 10.1063/1.2218845.
  • M. Liao and L. Duan, “Explosive boiling of liquid argon films on flat and nanostructured surfaces,” Numer. Heat Transf. Part A, vol. 78, no. 3, pp. 94–105, Jun. 2020. DOI: 10.1080/10407782.2020.1777801.
  • G. Nagayama, T. Tsuruta, and C. Ping, “Molecular dynamics simulation on bubble formation in a nanochannel,” Int. J. Heat Mass Transf., vol. 49, no. 2324, pp. 4437–4443, Nov. 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.04.030.
  • H. Shams, K. Basit, M. A. Khan, S. Saleem, and A. Mansure, “Realizing surface amphiphobicity using 3d printing techniques: A critical move towards manufacturing low-cost reentrant geometries,” Addit. Manuf., vol. 38, pp. 101777, Feb. 2021. DOI: 10.1016/j.addma.2020.101777.
  • H. J. Van Ouwerkerk, “Hemispherical bubble growth in a binary mixture,” Chem. Eng. Sci., vol. 27, no. 11, pp. 1957–1967, 1972. DOI: 10.1016/0009-2509(72)87054-4.
  • D. Deng, J. Feng, Q. Huang, Y. Tang, and Y. Lian, “Pool boiling heat transfer of porous structures with reentrant cavities,” Int. J. Heat Mass Transf., vol. 99, pp. 556–568, Aug. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.015.
  • D. Deng et al., “Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels,” Appl. Therm. Eng., vol. 107, pp. 420–430, Aug. 2016. DOI: 10.1016/j.applthermaleng.2016.06.172.
  • G. Pi, D. Deng, L. Chen, X. Xu, and C. Zhao, “Pool boiling performance of 3D-printed reentrant microchannels structuress,” Int. J. Heat Mass Transf., vol. 156, pp. 119920, Aug. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119920.
  • C. J. Kuo and Y. Peles, “Local measurement of flow boiling in structured surface microchannels,” Int. J. Heat Mass Transf., vol. 50, no. 2324, pp. 4513–4526, Nov. 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.03.047.
  • J. Zeng, L. Lin, Y. Tang, Y. Sun, and W. Yuan, “Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array,” Int. J. Heat Mass Transf., vol. 104, pp. 918–929, Jan. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.007.
  • Y. Sun et al., “Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities,” Appl. Therm. Eng., vol. 125, pp. 432–442, Oct. 2017. DOI: 10.1016/j.applthermaleng.2017.07.044.
  • P. A. Thompson and M. O. Robbins, “Shear flow near solids: Epitaxial order and flow boundary conditions,” Phys. Rev. A, vol. 41, no. 12, pp. 6830–6837, Jun. 1990. DOI: 10.1103/PhysRevA.41.6830.
  • G. Nagayama and P. Cheng, “Effects of interface wettability on microscale flow by molecular dynamics simulation,” Int. J. Heat Mass Transf., vol. 47, no. 3, pp. 501–513, Jan. 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.07.013.
  • J. Delhommelle and P. Millié, “Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation,” Mol. Phys., vol. 99, no. 8, pp. 619–625, Nov. 2001. DOI: 10.1080/00268970010020041.
  • Y. Chen, B. Yu, Y. Zou, B. Chen, and W. Tao, “Molecular dynamics studies of bubble nucleation on a grooved substrate,” Int. J. Heat Mass Transf., vol. 158, no. 6, pp. 119850, Sept. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119850.
  • M. Ilic, V. D. Stevanovic, S. Milivojevic, and M. M. Petrovic, “New insights into physics of explosive water boiling derived from molecular dynamics simulations,” Int. J. Heat Mass Transf., vol. 172, pp. 121141, Jun. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.