Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
291
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of convective heat transfer in metal foam-filled channels of three different cross-sections

, , , , &
Pages 222-236 | Received 17 Aug 2022, Accepted 10 Feb 2023, Published online: 20 Mar 2023

References

  • K. Chen, L. Guo and H. Wang, “A review on thermal application of metal foam,” Sci. China Technol. Sci., vol. 63, no. 12, pp. 2469–2490, 2020. DOI: 10.1007/s11431-020-1637-3.
  • Y. Zhu and Y. Li, “Three-dimensional numerical simulation of the laminar flow and heat transfer in four basic fins of plate-fin heat exchangers,” J. Heat Transfer, vol. 130, no. 11, pp. 1–8, 2008. DOI: 10.1115/1.2970072.
  • U. Brockmeier, T. Guentermann and M. Fiebig, “Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces,” Int. J. Heat Mass Transfer, vol. 36, no. 10, pp. 2575–2587, 1993. DOI: 10.1016/S0017-9310(05)80195-4.
  • R. M. Manglik and A. E. Bergles, “Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger,” Exper. Thermal Fluid Sci., vol. 10, no. 2, pp. 171–180, 1995. DOI: 10.1016/0894-1777(94)00096-Q.
  • W. M. Kays, “The basic heat transfer and flow friction characteristics of six compact high-performance heat transfer surfaces,” J. Engin. Power, vol. 82, no. 1, pp. 27–34, 1960. DOI: 10.1115/1.3672713.
  • K. M. Stone, “Review of literature on heat transfer enhancement in compact heat exchangers,” Air Conditioning Refrigeration Center (ACRC) TR-105, University libraray from University of Illinois, 1996. https://hdl.handle.net/2142/11540
  • G. Trilok and N. Gnanasekaran, “Numerical study on maximizing heat transfer and minimizing flow resistance behaviour of metal foams owing to their structural properties,” Int. J. Thermal Sciences, vol. 159, pp. 106617, Aug. 2021. DOI: 10.1016/j.ijthermalsci.2020.106617.
  • T. G, N. Gnanasekaran and M. Mobedi, “Various trade-off scenarios in thermo-hydrodynamic performance of metal foams due to variations in their thickness and structural conditions,” Energies, vol. 14, no. 24, pp. 8343, 2021. DOI: 10.3390/en14248343.
  • M. L. Hunt and C. L. Tien, “Effects of thermal dispersion on forced convection in fibrous media,” Int. J. Heat Mass Transfer, vol. 31, no. 2, pp. 301–309, 1988. DOI: 10.1016/0017-9310(88)90013-0.
  • A. Amiri and K. Vafai, “Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media,” Int. J. Heat Mass Transfer, vol. 37, no. 6, pp. 939–954, 1994. DOI: 10.1016/0017-9310(94)90219-4.
  • C. Y. Zhao, “Thermal transport in cellular metal foams with open cells (Dissertation),” University of Cambridge, Cambridge, England, Mar. 2003, pp. 65–66.
  • S. Yagi and N. Wakao, “Heat and mass transfer from wall to fluids in packed beds,” AIChE J., vol. 5, no. 1, pp. 79–85, Mar. 1959. DOI: 10.1002/aic.690050118.
  • N. Dukhan, R. Picon-Feliciano and A. R. Alvarez-Hernandez, “Heat transfer analysis in metal foams with low-conductivity fluids,” ASME, vol. 128, no. 8, pp. 784–792, Aug. 2006. DOI: 10.1115/1.2217750.
  • I. A. Badruddin, “Investigation of heat transfer in irregular porous cavity subjected to various boundary conditions,” HFF, vol. 29, no. 1, pp. 418–447, 2019. DOI: 10.1108/HFF-04-2018-0132.
  • G. D. Anthony and D. L. Cresswell, “Theoretical Prediction of Effective Heat Transfer Parameters in Packed Beds,” AIChE J., vol. 25, no. 4, pp. 663–676, Jul. 1979. DOI: 10.1002/aic.690250413.
  • G. J. Hwang and C. H. Chao, “Heat transfer measurement and analysis for sintered porous channels,” ASME, vol. 116, no. 2, pp. 456–464, May 1994. DOI: 10.1115/1.2911418.
  • V. V. Calmidi and R. L. Mahajan, “Forces convection in high porosity metal foams,” ASME J. Heat Transfer, vol. 122, no. 3, pp. 557–565, Aug. 2000. DOI: 10.1115/1.1287793.
  • W. Lu, C. Y. Zhao and S. A. Tassou, “Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes,” Int. J. Heat Mass Transfer, vol. 49, no. 15–16, pp. 2751–2761, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.12.012.
  • P. Hafeez, “Heat transfer in metal foam heat exchangers at high temperature,” Dissertation, University of Toronto, Toronto, Canada, 2016, pp. 65–75.
  • J. J. Hwang, G. J. Hwang, R. H. Yeh and C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” ASME, vol. 124, no. 1, pp. 120–129, Feb. 2002. DOI: 10.1115/1.1416690.
  • S. Y. Kim, B. H. Kang and J. H. Kim, “Forced convection from aluminium foam materials in an asymmetrically heated channel,” Int. J. Heat and Mass Transfer, vol. 44, no. 7, pp. 1451–1454, Apr. 2001. DOI: 10.1016/S0017-9310(00)00187-3.
  • D. Y. Lee and K. Vafai, “Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media,” Int. J. Heat and Mass Transfer, vol. 42, no. 3, pp. 423–435, 1999. DOI: 10.1016/S0017-9310(98)00185-9.
  • C. Yang, K. Ando and A. Nakayama, “A local thermal non-equilibrium analysis of fully developed forced convective flow in a tube filled with a porous medium,” Transp. Porous Med., vol. 89, no. 2, pp. 237–249, 2011. DOI: 10.1007/s11242-011-9766-1.
  • F. Kuwahara, C. Yang, K. Ando and A. Nakayama, “Exact solutions for a thermal nonequilibrium model of fluid saturated porous media based on an effective porosity,” J. Heat Transfer, vol. 133, no. 11, pp. 1–9, 2011. DOI: 10.1115/1.4004354.
  • Y. Yi, X. Bai, F. Kuwahara and A. Nakayama, “A local thermal non-equilibrium solution based on the Brinkman-Forchheimer-extended darcy model for thermally and hydrodynamically fully developed flow in a channel filled with a porous medium,” Transp. Porous Med., vol. 139, no. 1, pp. 67–88, 2021. DOI: 10.1007/s11242-021-01645-8.
  • V. V. Calmidi and R. L. Mahanjan, “The effective thermal conductivity of high porosity fibrous metal foams,” ASME, vol. 121, no. 2, pp. 466–471, May 1999. DOI: 10.1115/1.2826001.
  • K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat and Mass Transfer, vol. 44, no. 4, pp. 827–836, Feb. 2001. DOI: 10.1016/S0017-9310(00)00123-X.
  • “Partial Differential Equations ToolboxTM User’s Guide,” The Mathworks, Inc, Version 2021b, pp. 16–17, 2021. https://www.mathworks.com/help/pdf_doc/pde/pde.pdf
  • “ANSYS Fluent Theory Guide ANSYS,” ANSYS, Inc., Version 2021R1, pp. 223–228, 2021. http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Users%20Guide.pdf
  • B. Alazmi and K. Vafai, “Constant wall heat flux boundary conditions in porous media under high local thermal non-equilibrium conditions,” Int. J. Heat Mass Transfer, vol. 45, no. 15, pp. 3071–3087, Jul. 2002. DOI: 10.1016/S0017-9310(02)00044-3.
  • P. H. Jadhav, N. Gnanasekaran, D. Arumga Perumal and M. Mobedi, “Performance evaluation of partially filled high porosity metal foam configurations in a pipe,” APPl. Thermal Engin., vol. 194, pp. 117081, Jul. 2021. DOI: 10.1016/j.applthermaleng.2021.117081.
  • P. H. Jadhav, N. Gnanasekaran and M. Mobedi, “Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger,” Energy, vol. 263, pp. 125691, Part A, 15. Jan. 2023. DOI: 10.1016/j.energy.2022.125691.
  • K. Vafai and S. J. Kim, “Forced convection in a channel filled with a porous medium: An exact solution,” J. Heat Transfer, vol. 111, no. 4, pp. 1103–1106, Nov. 1989. DOI: 10.1115/1.3250779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.