Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
141
Views
0
CrossRef citations to date
0
Altmetric
Articles

Simulation of the effects of dilution gas for the formation of CJ plane during the oblique detonation

&
Pages 761-784 | Received 14 Sep 2022, Accepted 15 Mar 2023, Published online: 11 Apr 2023

References

  • F. Ma, J.-Y. Choi, and V. Yang, “Thrust chamber dynamics and propulsive performance of multitube pulse detonation engines,” J. Propul. Power, vol. 21, no. 4, pp. 681–691, 2005. DOI: 10.2514/1.8182.
  • S. J. Liu, H. Y. Peng, W. D. Liu, and H. L. Zhang, “Effects of cavity depth on the ethylene-air continuous rotating detonation,” Acta Astronaut., vol. 166, pp. 1–10, 2020. DOI: 10.1016/j.actaastro.2019.09.038.
  • D. T. Pratt, J. W. Humphrey, and D. E. Glenn, “Morphology of standing oblique detonation waves,” J. Propul. Power, vol. 7, no. 5, pp. 837–845, 1991. DOI: 10.2514/3.23399.
  • T. H. Yi, “Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines,” USA: The University of Texas at Arlington, 2005.
  • T. Nakamura, “Computational Analysis of Zel’dovich-von Neumann-Doering (ZND) Detonation,” USA: Texas A & M University, 2010.
  • C. Li, K. Kailasanath, and E. S. Oran, “Detonation structures behind oblique shocks,” Phys. Fluids, vol. 6, no. 4, pp. 1600–1611, 1994. DOI: 10.1063/1.868273.
  • H. Teng, C. Tian, Y. Zhang, L. Zhou, and H. D. Ng, “Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture,” J. Fluid Mech., vol. 913, pp. A1, 2021. DOI: 10.1017/jfm.2020.1131.
  • X. Shi, H. Xie, L. Zhou, and Y. Zhang, “A theoretical criterion on the initiation type of oblique detonation waves,” Acta Astronaut., vol. 190, pp. 342–348, 2022. DOI: 10.1016/j.actaastro.2021.10.005.
  • T. Wang, Y. Zhang, H. Teng, Z. Jiang, and H. D. Ng, “Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture,” Phys. Fluids, vol. 27, no. 9, pp. 096101, 2015. DOI: 10.1063/1.4930986.
  • Y. Fang, Z. Hu, H. Teng, Z. Jiang, and H. D. Ng, “Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen–air mixtures,” Aerosp. Sci. Technol., vol. 71, pp. 256–263, 2017. DOI: 10.1016/j.ast.2017.09.027.
  • S. Miao, J. Zhou, S. Liu, and X. Cai, “Formation mechanisms and characteristics of transition patterns in oblique detonations,” Acta Astronaut., vol. 142, pp. 121–129, 2018. DOI: 10.1016/j.actaastro.2017.10.035.
  • L. F. F. Da Silva and B. Deshaies, “Stabilization of an oblique detonation wave by a wedge: A parametric numerical study,” Combust. Flame, vol. 121, no. 12, pp. 152–166, 2000. DOI: 10.1016/S0010-2180(99)00141-8.
  • M. Yu and S. Miao, “Initiation characteristics of wedge-induced oblique detonation waves in turbulence flows,” Acta Astronaut., vol. 147, pp. 195–204, 2018. DOI: 10.1016/j.actaastro.2018.04.022.
  • M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein, “Comprehensive H2/O2 kinetic model for high‐pressure combustion,” Int. J. Chem. Kinet., vol. 44, no. 7, pp. 444–474, 2012. DOI: 10.1002/kin.20603.
  • C. Tian, H. Teng, and H. D. Ng, “Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution,” Fuel, vol. 252, pp. 496–503, 2019. DOI: 10.1016/j.fuel.2019.04.126.
  • H. Guo et al., “The formation and development of oblique detonation wave with different chemical reaction models,” Aerosp. Sci. Technol., vol. 117, pp. 106964, 2021. DOI: 10.1016/j.ast.2021.106964.
  • H. Guo, H. Yang, N. Zhao, S. Li, and H. Zheng, “Influence of incoming flow velocity and mixture equivalence ratio on oblique detonation characteristics,” Aerosp. Sci. Technol., vol. 119, pp. 107088, 2021. DOI: 10.1016/j.ast.2021.107088.
  • T. Honghui, Y. Zhang, Y. Pengfei, and Z. Jiang, “Oblique detonation wave triggered by a double wedge in hypersonic flow,” Chin. J. Aeronaut., vol. 35, no. 4, pp. 176–184, 2022. DOI: 10.1016/j.cja.2021.07.040.
  • H. Teng, J. Bian, L. Zhou, and Y. Zhang, “A numerical investigation of oblique detonation waves in hydrogen-air mixtures at low Mach numbers,” Int. J. Hydrogen Energy, vol. 46, no. 18, pp. 10984–10994, 2021. DOI: 10.1016/j.ijhydene.2020.12.180.
  • B. Bomjan, S. Bhattrai, and H. Tang, “Characterization of induction and transition methods of oblique detonation waves over dual-angle wedge,” Aerosp. Sci. Technol., vol. 82, pp. 394–401, 2018. DOI: 10.1016/j.ast.2018.07.038.
  • Q. Qin and X. Zhang, “Study on the effects of geometry on the initiation characteristics of the oblique detonation wave for hydrogen-air mixture,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 17004–17014, 2019. DOI: 10.1016/j.ijhydene.2019.04.248.
  • G. Xiang, Y. Zhang, X. Gao, H. Li, and X. Huang, “Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures,” Fuel, vol. 295, pp. 120615, 2021. DOI: 10.1016/j.fuel.2021.120615.
  • Y. Fang, Z. Zhang, Z. Hu, and X. Deng, “Initiation of oblique detonation waves induced by a blunt wedge in stoichiometric hydrogen-air mixtures,” Aerosp. Sci. Technol., vol. 92, pp. 676–684, 2019. DOI: 10.1016/j.ast.2019.06.031.
  • W. Han, C. Wang, and C. K. Law, “Three-dimensional simulation of oblique detonation waves attached to cone,” Phys. Rev. Fluids, vol. 4, no. 5, pp. 053201, 2019. DOI: 10.1103/PhysRevFluids.4.053201.
  • K. Wang, P. Yang, and H. Teng, “Steadiness of wave complex induced by oblique detonation wave reflection before an expansion corner,” Aerosp. Sci. Technol., vol. 112, pp. 106592, 2021. DOI: 10.1016/j.ast.2021.106592.
  • G. Xiang, X. Li, X. Sun, and X. Chen, “Investigations on oblique detonations induced by a finite wedge in high altitude,” Aerosp. Sci. Technol., vol. 95, pp. 105451, 2019. DOI: 10.1016/j.ast.2019.105451.
  • Z. Zhang, C. Wen, W. Zhang, Y. Liu, and Z. Jiang, “Formation of stabilized oblique detonation waves in a combustor,” Combust. Flame, vol. 223, pp. 423–436, 2021. DOI: 10.1016/j.combustflame.2020.09.034.
  • K. Iwata, N. Hanyu, S. Maeda, and T. Obara, “Experimental visualization of sphere-induced oblique detonation in a non-uniform mixture,” Combust. Flame, vol. 244, pp. 112253, 2022. DOI: 10.1016/j.combustflame.2022.112253.
  • Y. Zhang, Y. Fang, H. D. Ng, and H. Teng, “Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene–oxygen mixtures with high argon dilution,” Combust. Flame, vol. 204, pp. 391–396, 2019. DOI: 10.1016/j.combustflame.2019.03.033.
  • X. Xi, C. Tian, and K. Wang, “Effects of hydrogen addition on oblique detonations in methane–air mixtures,” Int. J. Hydrogen Energy, vol. 47, no. 13, pp. 8621–8629, 2022. DOI: 10.1016/j.ijhydene.2021.12.195.
  • A. Vashishtha et al., “Oblique detonation wave control with O3 and H2O2 sensitization in hypersonic flow,” Energies, vol. 15, no. 11, pp. 4140, 2022. DOI: 10.3390/en15114140.
  • I. Bedarev, K. Rylova, and A. Fedorov, “Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen–air mixtures,” Combust Explos. Shock Waves, vol. 51, no. 5, pp. 528–539, 2015. DOI: 10.1134/S0010508215050032.
  • S. W. Grib et al., “Two-dimensional temperature in a detonation channel using two-color OH planar laser-induced fluorescence thermometry,” Combust. Flame, vol. 228, pp. 259–276, 2021. DOI: 10.1016/j.combustflame.2021.02.002.
  • D. Brouzet, G. Vignat, and M. Ihme, “Dynamics and structure of detonations in stratified product-gas diluted mixtures,” Proc. Combust. Inst., in press, 2022. DOI: 10.1016/j.proci.2022.07.173.
  • D. C. Bull, J. Elsworth, C. Quinn, and G. Hooper, “A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen,” J. Phys. D: Appl. Phys., vol. 9, no. 14, pp. 1976, 1991. DOI: 10.1088/0022-3727/9/14/009.
  • J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet., vol. 36, no. 10, pp. 566–575, 2004. DOI: 10.1002/kin.20026.
  • B. J. McBride, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. USA: National Aeronautics and Space Administration, John H. Glenn Research Center, 2002.
  • J. Warnatz, U. Maas, R. W. Dibble and J. Warnatz, Combustion. Berlin, Heidelberg: Springer, 2006.
  • W. C. Gardiner and J. Troe, “Rate coefficients of thermal dissociation, isomerization, and recombination reactions,” in Combustion Chemistry. New York: Springer, 1984, pp. 173–196. DOI: 10.1007/978-1-4684-0186-8_4.
  • Y.-Y. Niu, Y.-C. Chen, T.-Y. Yang, and F. Xiao, “Development of a less-dissipative hybrid AUSMD scheme for multi-component flow simulations,” Shock Waves, vol. 29, no. 5, pp. 691–704, 2019. DOI: 10.1007/s00193-018-0872-7.
  • M.-S. Liou, “A sequel to ausm: Ausm+,” J. Comput. Phys., vol. 129, no. 2, pp. 364–382, 1996. DOI: 10.1006/jcph.1996.0256.
  • Y. Wada and M.-S. Liou, “An accurate and robust flux splitting scheme for shock and contact discontinuities,” SIAM J. Numer. Anal., vol. 18, no. 3, pp. 633–657, 1997. DOI: 10.1137/S1064827595287626.
  • E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin, Heidelberg: Springer Science & Business Media, 2013.
  • C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys., vol. 77, no. 2, pp. 439–471, 1988. DOI: 10.1016/0021-9991(88)90177-5.
  • Y.-Y. Niu, “Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD,” J. Comput. Phys., vol. 308, pp. 389–410, 2016. DOI: 10.1016/j.jcp.2015.12.045.
  • Y. Y. Niu, “Advection upwinding splitting method to solve a compressible two‐fluid model,” Int. J. Numer. Meth. Fluids, vol. 36, no. 3, pp. 351–371, 2001. DOI: 10.1002/fld.138.
  • J. Scott and Y.-Y. Niu, “Comparison of limiters in flux-split algorithms for Euler equations,” presented at the 31st Aerospace Sciences Meeting, p. 68, 1993. DOI: 10.2514/6.1993-68.
  • D. A. Cassidy, J. R. Edwards, and M. Tian, “An investigation of interface-sharpening schemes for multi-phase mixture flows,” J. Comput. Phys., vol. 228, no. 16, pp. 5628–5649, 2009. DOI: 10.1016/j.jcp.2009.02.028.
  • S. I. Huang and Y. Y. Niu, “Accurate simulation of discontinuities induced by detonations,” J. Aeronaut. Astronaut. Aviat., vol. 55, no. 2, pp. 119–134, 2023. DOI: 10.6125/JoAAA.202306_55(2).
  • T.-Y. Chiu, Y.-Y. Niu, and Y.-J. Chou, “Accurate hybrid AUSMD type flux algorithm with generalized discontinuity sharpening reconstruction for two-fluid modeling,” J. Comput. Phys., vol. 443, pp. 110540, 2021. DOI: 10.1016/j.jcp.2021.110540.
  • R. J. LeVeque and H. C. Yee, “A study of numerical methods for hyperbolic conservation laws with stiff source terms,” J. Comput. Phys., vol. 86, no. 1, pp. 187–210, 1990. DOI: 10.1016/0021-9991(90)90097-K.
  • G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal., vol. 5, no. 3, pp. 506–517, 1968. DOI: 10.1137/0705041.
  • C. Morris, M. Kamel, and R. Hanson, “Expansion tube investigation of ram-accelerator projectile flowfields,” Presented at the 32nd Joint Propulsion Conference and Exhibit, USA, p. 2680, 1996. DOI: 10.2514/6.1996-2680.
  • K. Iwata, S. Nakaya, and M. Tsue, “Wedge-stabilized oblique detonation in an inhomogeneous hydrogen–air mixture,” Proc. Combust. Inst., vol. 36, no. 2, pp. 2761–2769, 2017. DOI: 10.1016/j.proci.2016.06.094.
  • T. Taguchi et al., “Investigation of reflective shuttling detonation cycle by schlieren and chemiluminescence photography,” Combust. Flame, vol. 236, pp. 111826, 2022. DOI: 10.1016/j.combustflame.2021.111826.
  • V. Athmanathan et al., “On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors,” Combust. Flame, vol. 240, pp. 112013, 2022. DOI: 10.1016/j.combustflame.2022.112013.
  • Z. Zhang et al., “An experimental study of formation of stabilized oblique detonation waves in a combustor,” Combust. Flame, vol. 237, pp. 111868, 2022. DOI: 10.1016/j.combustflame.2021.111868.
  • C. A. Mouton and H. G. Hornung, “Mach stem height and growth rate predictions," AIAA J., vol. 45, no. 8, pp. 1977–1987, 2007. DOI: 10.2514/1.27460.
  • C. A. Mouton, “Transition between regular reflection and Mach reflection in the dual-solution domain,” Calif. Inst. Technol., 2007. DOI: 10.7907/TEA0-Q468.
  • G. Ben-Dor and K. Takayama, “The phenomena of shock wave reflection—a review of unsolved problems and future research needs,” Shock Waves, vol. 2, no. 4, pp. 211–223, 1992. DOI: 10.1007/BF01414757.
  • Y. Uemura, A. K. Hayashi, M. Asahara, N. Tsuboi, and E. Yamada, “Transverse wave generation mechanism in rotating detonation,” Proc. Combust. Inst., vol. 34, no. 2, pp. 1981–1989, 2013. DOI: 10.1016/j.proci.2012.06.184.
  • S. Miao, J. Zhou, Z. Lin, X. Cai, and S. Liu, “Numerical study on thermodynamic efficiency and stability of oblique detonation waves,” AIAA J., vol. 56, no. 8, pp. 3112–3122, 2018. DOI: 10.2514/1.J056887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.