Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
234
Views
2
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical analysis of effect of combined drop-shape pin fins and plate fins type heat sink under natural convection

ORCID Icon &
Pages 975-1000 | Received 30 Aug 2022, Accepted 15 Mar 2023, Published online: 07 Apr 2023

References

  • N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Display Technol., vol. 1, no. 1, pp. 167–171, 2005.
  • N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: Failure analysis of white LEDs,” J. Cryst. Growth, vol. 268, no. 34, pp. 449–456, 2004. DOI: 10.1016/j.jcrysgro.2004.04.071.
  • M.-Y. Tsai, C. H. Chen, and C. S. Kang, “Thermal measurements and analyses of low-cost high-power LED packages and their modules,” Microelectron. Reliab., vol. 52, no. 5, pp. 845–854, 2012. DOI: 10.1016/j.microrel.2011.04.008.
  • Z. Khattak and H. M. Ali, “Air cooled heat sink geometries subjected to forced flow: A critical review,” Int. J. Heat Mass Transf., vol. 130, pp. 141–161, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.048.
  • Y. Chen, M.-Z. Guo, K.-S. Yang, and C.-C. Wang, “Enhanced cooling for LED lighting using ionic wind,” Int. J. Heat Mass Transf., vol. 57, no. 1, pp. 285–291, 2013. DOI DOI: 10.1016/j.ijheatmasstransfer.2012.10.015.
  • M. A. Aziz and O. A. Gaheen, “Effect of the isothermal fins on the natural convection heat transfer and flow profile inside a vertical channel with isothermal parallel walls,” SN Appl. Sci., vol. 1, no. 10, pp. 1–13, 2019. DOI: 10.1007/s42452-019-1232-7.
  • W.-H. Chi, T.-L. Chou, C.-N. Han, S.-Y. Yang, and K.-N. Chiang, “Analysis of thermal and luminous performance of MR-16 LED lighting module,” IEEE Trans. Compon. Packag. Technol., vol. 33, no. 4, pp. 713–721, 2010. DOI: 10.1109/TCAPT.2010.2073469.
  • S. A. Nada, “Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate,” Int. J. Heat Mass Transf., vol. 50, no. 34, pp. 667–679, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.07.010.
  • Y. Joo and S. J. Kim, “Comparison of thermal performance between plate-fin and pin-fin heat sinks in natural convection,” Int. J. Heat Mass Transf., vol. 83, pp. 345–356, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.12.023.
  • H. E. Ahmed, B. H. Salman, A. Sh Kherbeet, and M. I. Ahmed, “Optimization of thermal design of heat sinks: A review,” Int. J. Heat Mass Transf., vol. 118, pp. 129–153, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.099.
  • P. Qin, Q. Li, and Y. C. Chan, “Thermal analysis of high brightness flip-chip LED packages,” presented at the 2011 IEEE 13th Electron. Packaging Technol. Conf. Singapore, IEEE, 2011, pp. 722–725. DOI: 10.1109/EPTC.2011.6184513.
  • B. Jayachandran, P. P. Sajith, and C. B. Sobhan, “Investigations on replacement of fins with flat heat pipes for high power LEDs,” Proc. Eng., vol. 118, pp. 654–661, 2015. DOI: 10.1016/j.proeng.2015.08.499.
  • S. Jang and M. W. Shin, “Thermal analysis of LED arrays for automotive headlamp with a novel cooling system,” IEEE Trans. Device Mater. Relib., vol. 8, no. 3, pp. 561–564, 2008. DOI: 10.1109/TDMR.2008.2002355.
  • Y.-F. Su, S.-Y. Yang, T.-Y. Hung, C.-C. Lee, and K.-N. Chiang, “Light degradation test and design of thermal performance for high-power light-emitting diodes,” Microelectron. Reliab., vol. 52, no. 5, pp. 794–803, 2012. DOI: 10.1016/j.microrel.2011.07.059.
  • Y. Lai et al., “Liquid cooling of bright LEDs for automotive applications,” Appl. Therm. Eng., vol. 29, no. 56, pp. 1239–1244, 2009. DOI: 10.1016/j.applthermaleng.2008.06.023.
  • S. Liu, J. Yang, Z. Gan, and X. Luo, “Structural optimization of a microjet based cooling system for high power LEDs,” Int. J. Therm. Sci., vol. 47, no. 8, pp. 1086–1095, 2008. DOI: 10.1016/j.ijthermalsci.2007.09.005.
  • B. Ramos-Alvarado, B. Feng, and G. P. Peterson, “Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays,” Appl. Therm. Eng., vol. 59, no. 12, pp. 648–659, 2013. DOI: 10.1016/j.applthermaleng.2013.06.036.
  • J.-C. Wang, “Thermal investigations on LED vapor chamber-based plates,” Int. Commun. Heat Mass Transf., vol. 38, no. 9, pp. 1206–1212, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.07.002.
  • D. V. Nair and P. S. Ghoshdastidar, “A comparative study of 2-D and 3-D conjugate natural convection from a vertical rectangular fin array with multilayered base subjected to distributed high heat flux,” Int. J. Heat Mass Transf., vol. 121, pp. 1316–1334, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.037.
  • K. C. Vyshnave, G. Rohit, D. V. N. S. Maithreya, and S. G. Rakesh, “Studies on single-phase and multi-phase heat pipe for LED panel for efficient heat dissipation,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 225, no. 1, pp. 012033, 2017. DOI: 10.1088/1757-899X/225/1/012033.
  • H. Jang, J. H. Lee, C. Byon, and B. J. Lee, “Innovative analytic and experimental methods for thermal management of SMD-type LED chips,” Int. J. Heat Mass Transf., vol. 124, pp. 36–45, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.055.
  • T.-M. Jeng, S.-C. Tzeng, and Y.-C. Lin, “Experimental study of heat transfer enhancement of inserted LED lamp by the closed-cell aluminum-foam ceiling,” Int. Commun. Heat Mass Transf., vol. 66, pp. 233–239, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.06.001.
  • M. Arik et al., “Development of a high-lumen solid state down light application,” IEEE Trans. Compon. Packag. Technol., vol. 33, no. 4, pp. 668–679, 2010. DOI: 10.1109/TCAPT.2010.2055565.
  • X.-J. Zhao, Y.-X. Cai, J. Wang, X.-H. Li, and C. Zhang, “Thermal model design and analysis of the high-power LED automotive headlight cooling device,” Appl. Therm. Eng., vol. 75, pp. 248–258, 2015. DOI: 10.1016/j.applthermaleng.2014.09.066.
  • S. Chang and C. Tsou, “A novel silicon-based LED packaging module with an integrated temperature sensor,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 5, pp. 769–776, 2014. DOI: 10.1109/TCPMT.2014.2305169.
  • C. Xiao, H. Liao, Y. Wang, J. Li, and W. Zhu, “A novel automated heat-pipe cooling device for high-power LEDs,” Appl. Therm. Eng., vol. 111, pp. 1320–1329, 2017. DOI: 10.1016/j.applthermaleng.2016.10.041.
  • I. L. Ngo, H. Jang, C. Byon, and B. J. Lee, “Experimental study on thermal performance of SMD-LED chips under the effects of electric wire pattern and LED arrangement,” Int. J. Heat Mass Transf., vol. 127, pp. 746–757, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.08.089.
  • K. B. Abdelmlek, Z. Araoud, K. Charrada, and G. Zissis, “Optimization of the thermal distribution of multi-chip LED package,” Appl. Therm. Eng., vol. 126, pp. 653–660, 2017. DOI: 10.1016/j.applthermaleng.2017.07.136.
  • J. H. Choi and M. W. Shin, “Thermal investigation of LED lighting module,” Microelectron. Reliab., vol. 52, no. 5, pp. 830–835, 2012. DOI: 10.1016/j.microrel.2011.04.009.
  • J. Zhou, J. Huang, Y. Wang, and Z. Zhou, “Thermal distribution of multiple LED module,” Appl. Therm. Eng., vol. 93, pp. 122–130, 2016. DOI: 10.1016/j.applthermaleng.2015.09.022.
  • S. Sundar, G. Song, M. Z. Zahir, J. S. Jayakumar, and S.-J. Yook, “Performance investigation of radial heat sink with circular base and perforated staggered fins,” Int. J. Heat Mass Transf., vol. 143, pp. 118526, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118526.
  • M. Y. Soh, T. H. Teo, W. X. Ng, and K. S. Yeo, “Review of high efficiency integrated LED lighting,” presented at the 2017 IEEE 12th Int. Conf. Power Electron. Drive Syst. (PEDS), Honolulu, Hawaii, USA, IEEE, 2017. pp. 93–97. DOI: 10.1109/PEDS.2017.8289181.
  • A. I. Zografos and J. Edward Sunderland, “Natural convection from pin fin arrays,” Exp. Therm. Fluid Sci., vol. 3, no. 4, pp. 440–449, 1990. DOI: 10.1016/0894-1777(90)90042-6.
  • A. Ramachan and J. P. Holman , Experimental Methods for Engineers. New York: McGraw-Hill, pp. 564, 1966.
  • S. J. Kline, “Describing uncertainty in single sample experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.
  • I. Tari and M. Mehrtash, “Natural convection heat transfer from inclined plate-fin heat sinks,” Int. J. Heat Mass Transf., vol. 56, no. 12, pp. 574–593, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.08.050.
  • W. H. McAdams, Heat Transmission: William H-McAdams. New York: McGraw Hill, 1954.
  • E. M. Sparrow and S. B. Vemuri, “Orientation effects on natural convection/radiation heat transfer from pin-fin arrays,” Int. J. Heat Mass Transf., vol. 29, no. 3, pp. 359–368, 1986. DOI: 10.1016/0017-9310(86)90206-1.
  • A. M. Mousa, “Numerical study of natural convection heat transfer from a horizontal plate using solid, hollow and hollow/perforated pin fins,” Nile J. Basic Sci., vol. 1, no. 1, pp. 35–48, 2021. DOI: 10.21608/NJBS.2021.202757.
  • R. Deshmukh and V. N. Raibhole, “Investigation of heat transfer and fluid flow characteristics of optimised drop shape pin fin heat sink under natural convection,” presented at the Proc. 26th Natl. and 4th Int. ISHMT-ASTFE Heat and Mass Transf. Conf., Tamil Nadu, India, Begel House Inc., December 17–20, 2021. DOI: 10.1615/IHMTC-2021.400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.