Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
243
Views
0
CrossRef citations to date
0
Altmetric
Articles

The effects of topological configuration and geometric parameters on heat transfer and fluid flow characteristics of lattice-based heat sinks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1481-1500 | Received 01 Dec 2022, Accepted 14 Apr 2023, Published online: 01 May 2023

References

  • S. Narkhede, A. Sur and S. Darvekar, “Applications, manufacturing and thermal characteristics of micro-lattice structures: current state of the art,” Eng. J., vol. 23, no. 6, pp. 419–431, 2019. DOI: 10.4186/ej.2019.23.6.419.
  • S. Krishnan, S. V. Garimella and J. Y. Murthy, “Simulation of thermal transport in open-cell metal foams: effect of periodic unit-cell structure,” J. Heat Transfer, vol. 130, no. 2, pp. 024503-1–024503-5, 2008. DOI: 10.1115/1.2789718.
  • V. V. Calmidi and R. L. Mahajan, “The effective thermal conductivity of high porosity fibrous metal foams,” J. Heat Transfer, vol. 121, no. 2, pp. 466–471, 1999. DOI: 10.1115/1.2826001.
  • Y. W. Son, T. Kim, T. J. Lu and S. M. Chang, “On thermally managing lithium-ion battery cells by air-convection aspirated in tetrahedral lattice porous cold plates,” Appl. Therm. Eng., vol. 189, no. February, pp. 116711, 2021. DOI: 10.1016/j.applthermaleng.2021.116711.
  • T. Dixit, P. Nithiarasu and S. Kumar, “Numerical evaluation of additively manufactured lattice architectures for heat sink applications,” Int. J. Therm. Sci., vol. 159, no. September 2020, pp. 106607, 2021. DOI: 10.1016/j.ijthermalsci.2020.106607.
  • T. Kim, H. P. Hodson and T. J. Lu, “Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material,” Int. J. Heat Mass Transfer, vol. 47, no. 6–7, pp. 1129–1140, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.012.
  • T. Kim, H. P. Hodson and T. J. Lu, “Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material,” Int. J. Heat Mass Transfer, vol. 48, no. 19–20, pp. 4243–4264, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.04.026.
  • X. Zhang, X. Jin, G. Xie and H. Yan, “Thermo-fluidic comparison between sandwich panels with tetrahedral lattice cores fabricated by casting and metal sheet folding,” Energies, vol. 10, no. 7, pp. 906, 2017. DOI: 10.3390/en10070906.
  • X. Jin, Y. Li, H. Yan and G. Xie, “Comparative study of flow structures and heat transfer enhancement in a metallic lattice fabricated by metal sheet folding: effects of punching location shift,” Int. J. Heat Mass Transfer, vol. 134, pp. 209–225, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.036.
  • H. B. Yan, Q. C. Zhang, T. J. Lu and T. Kim, “A lightweight X-type metallic lattice in single-phase forced convection,” Int. J. Heat Mass Transfer, vol. 83, pp. 273–283, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.061.
  • X. Bai, Z. Zheng and A. Nakayama, “Heat transfer performance analysis on lattice core sandwich panel structures,” Int. J. Heat Mass Transfer, vol. 143, pp. 118525, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118525.
  • T. Dixit, E. Al-Hajri, M. C. Paul, P. Nithiarasu and S. Kumar, “High performance, microarchitected, compact heat exchanger enabled by 3D printing,” Appl. Therm. Eng., vol. 210, no. March, pp. 118339, 2022. DOI: 10.1016/j.applthermaleng.2022.118339.
  • P. Ekade and S. Krishnan, “Fluid flow and heat transfer characteristics of octet truss lattice geometry,” Int. J. Therm. Sci., vol. 137, no. November 2018, pp. 253–261, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.031.
  • S. Krishnan, D. Hernon, M. Hodes, J. Mullins and A. M. Lyons, “Design of complex structured monolithic heat sinks for enhanced air cooling,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 2, pp. 266–277, 2012. DOI: 10.1109/TCPMT.2011.2175448.
  • N. Dukhan and A. S. Suleiman, “The thermally-developing region in metal foam with open pores and high porosity,” Therm. Sci. Eng. Prog., vol. 1, pp. 88–96, 2017. DOI: 10.1016/j.tsep.2017.03.004.
  • K. N. Son, J. A. Weibel, V. Kumaresan and S. V. Garimella, “Design of multifunctional lattice-frame materials for compact heat exchangers,” Int. J. Heat Mass Transfer, vol. 115, pp. 619–629, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.073.
  • M. Iasiello et al., “Numerical analysis of heat transfer and pressure drop in metal foams for different morphological models,” J. Heat Transfer, vol. 136, no. 11, pp. 1–11, 2014. DOI: 10.1115/1.4028113.
  • C. Moon, H. D. Kim and K. C. Kim, “Kelvin-cell-based metal foam heat exchanger with elliptical struts for low energy consumption,” Appl. Therm. Eng., vol. 144, pp. 540–550, 2018. DOI: 10.1016/j.applthermaleng.2018.07.110.
  • J. Y. Ho, K. C. Leong and T. N. Wong, “Experimental and numerical investigation of forced convection heat transfer in porous lattice structures produced by selective laser melting,” Int. J. Therm. Sci., vol. 137, no. November 2018, pp. 276–287, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.022.
  • J. Y. Ho and K. C. Leong, “Cylindrical porous inserts for enhancing the thermal and hydraulic performance of water-cooled cold plates,” Appl. Therm. Eng., vol. 121, pp. 863–878, 2017. DOI: 10.1016/j.applthermaleng.2017.04.101.
  • M. Wong, I. Owen, C. J. Sutcliffe and A. Puri, “Convective heat transfer and pressure losses across novel heat sinks fabricated by selective laser melting,” Int. J. Heat Mass Transfer, vol. 52, no. 1–2, pp. 281–288, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.002.
  • J. Tian et al., “The effects of topology upon fluid-flow and heat-transfer within cellular copper structures,” Int. J. Heat Mass Transfer, vol. 47, no. 14–16, pp. 3171–3186, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.02.010.
  • W. Qu and I. Mudawar, “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” Int. J. Heat Mass Transfer, vol. 45, no. 12, pp. 2549–2565, 2002. DOI: 10.1016/S0017-9310(01)00337-4.
  • R. Tiwari, R. S. Andhare, A. Shooshtari and M. Ohadi, “Development of an additive manufacturing-enabled compact manifold microchannel heat exchanger,” Appl. Therm. Eng., vol. 147, pp. 781–788, 2019. DOI: 10.1016/j.applthermaleng.2018.10.122.
  • X. Zhang, R. Tiwari, A. H. Shooshtari and M. M. Ohadi, “An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications,” Appl. Therm. Eng., vol. 143, pp. 899–908, 2018. DOI: 10.1016/j.applthermaleng.2018.08.032.
  • Y. K. Prajapati, “Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink,” Int. J. Heat Mass Transfer, vol. 137, pp. 1041–1052, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.012.
  • H. Shafeie, O. Abouali, K. Jafarpur and G. Ahmadi, “Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures,” Appl. Therm. Eng., vol. 58, no. 1–2, pp. 68–76, 2013. DOI: 10.1016/j.applthermaleng.2013.04.008.
  • S. Narkhede and A. Sur, “Performance prediction of hollow micro-lattice cross-flow heat exchanger using a numerical approach,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 4909–4916, 2022. DOI: 10.1080/01430750.2021.1927835.
  • H. Wang, Z. Chen and J. Gao, “Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks,” Appl. Therm. Eng., vol. 107, pp. 870–879, 2016. DOI: 10.1016/j.applthermaleng.2016.07.039.
  • Y. F. Li, G. D. Xia, D. D. Ma, Y. T. Jia and J. Wang, “Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs,” Int. J. Heat Mass Transfer, vol. 98, pp. 17–28, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.022.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 1st ed. Boca Raton: CRC Press, 1980. DOI: 10.13182/nse81-a20112.
  • T. Kim, C. Y. Zhao, T. J. Lu and H. P. Hodson, “Convective heat dissipation with lattice-frame materials,” Mech. Mater., vol. 36, no. 8, pp. 767–780, 2004. DOI: 10.1016/j.mechmat.2003.07.001.
  • K. D. Fink, J. A. Kolodziejska, A. J. Jacobsen and C. S. Roper, “Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides,” AIChE J., vol. 57, no. 10, pp. 2636–2646, 2011. DOI: 10.1002/aic.12490.
  • J. J. Hwang, G. J. Hwang, R. H. Yeh and C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” J. Heat Transfer, vol. 124, no. 1, pp. 120–129, 2002. DOI: 10.1115/1.1416690.
  • P. G. LaHaye, F. J. Weugebauer and R. K. Sakhuja, “A generalized prediction of heat transfer surfaces,” J. Heat Transfer, vol. 96, no. 4, pp. 511–517, 1974. DOI: 10.1115/1.3450237.
  • W. M. Kays and A. L. London, Compact Heat Exchangers. Malabar, FL: Krieger Publishing Company, 1984. http://books.google.de/books?id=A08qAQAAMAAJ.
  • T. F. Irvine, J. P. Hartnett, R. K. Shah and A. L. London, Advances in Heat Transfer Supplement 1 Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Orlando, FL: Academic Press, 1978. https://books.google.co.in/books?id=FtNFAQAAIAAJ.
  • A. August and B. Nestler, “About the surface area to volume relations of open cell foams,” Eng. Res. Express, vol. 2, no. 1, pp. 015021, 2020. DOI: 10.1088/2631-8695/ab6ac6.
  • M. Usta, M. Morabito, M. Alrehili, A. Hakim and A. Oztekin, “Steady three-dimensional flows past hollow fiber membrane arrays–cross flow arrangement,” Can. J. Phys., vol. 96, no. 12, pp. 1272–1287, 2018. DOI: 10.1139/cjp-2017-0914.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.