Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
169
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal performance of solar photovoltaic panel in hot climatic regions: Applicability and optimization analysis of PCM materials

, , &
Pages 1612-1632 | Received 14 Dec 2022, Accepted 21 Apr 2023, Published online: 17 May 2023

References

  • H. Alizadeh et al., “Numerical simulation of PV cooling by using single turn pulsating heat pipe,” Int. J. Heat Mass Transf., vol. 127, pp. 203–208, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.108.
  • K. Khanafer, A. Al-Masri, and K. Vafai, “Optimization of the utilization of phase change materials in planar structures to control and optimize energy Flux,” Int. Commun. Heat Mass Transf., vol. 139, pp. 106481, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106481.
  • H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Appl. Energy, vol. 86, no. 9, pp. 1395–1404, 2009. DOI: 10.1016/j.apenergy.2008.11.020.
  • R. O’Hayre, S.-W. Cha, W. G. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 3rd ed. New Jersey: Wiley, 2016, pp. 21–22.
  • T. Khan, M. Waseem, M. Tahir, S. Liu, and M. Yu, “Autonomous hydrogen-based solar-powered energy system for rural electrification in Balochistan, Pakistan: An energy-economic Feasibility Analysis,” Energy Convers. Manage., vol. 271, pp. 116284, 2022. DOI: 10.1016/j.enconman.2022.116284.
  • N. S. M. N. Izam, Z. Itam, W. L. Sing, and A. Syamsir, “Sustainable development perspectives of solar energy technologies with focus on solar photovoltaic—A review,” Energies, vol. 15, no. 8, pp. 2790, 2022. DOI: 10.3390/en15082790.
  • O. A. Al-Shahri et al., “Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review,” J. Clean. Prod., vol. 284, pp. 125465, 2021. DOI: 10.1016/j.jclepro.2020.125465.
  • R. M. Elavarasan et al., “Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review,” Energy Convers. Manage., vol. 255, pp. 115278, 2022. DOI: 10.1016/j.enconman.2022.115278.
  • T. Venkatesh, S. Manikandan, C. Selvam, and S. Harish, “Performance enhancement of hybrid solar PV/T system with graphene based nanofluids,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105794, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105794.
  • A. Shrivastava et al., “A study on the effects of forced air-cooling enhancements on a 150 W solar photovoltaic thermal collector for green cities,” Sustain. Energy Technol. Assess., vol. 49, pp. 101782, 2022. DOI: 10.1016/j.seta.2021.101782.
  • Y. He, L. Xiao, Y. Yang, and J. Wang, “PCM Thermal conductivity effect on mechanism of PV/PCM thermal control characteristics,” Int. J. Green Energy, vol. 17, no. 12, pp. 783–792, 2020. DOI: 10.1080/15435075.2020.1798769.
  • A. Waqas and J. Ji, “Thermal management of conventional PV panel using PCM with movable shutters – A numerical study,” Solar Energy, vol. 158, pp. 797–807, 2017. DOI: 10.1016/j.solener.2017.10.050.
  • M. A. Haque, M. A. K. Miah, S. Hossain, and M. H. Rahman, “Passive cooling configurations for enhancing the photovoltaic efficiency in hot climatic conditions,” ASME. J. Sol. Energy Eng., vol. 144, no. 1, pp. 011009, 2022.
  • P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of PV modules: A state of art,” Case Stud. Therm. Eng., vol. 21, pp. 100674, 2020. DOI: 10.1016/j.csite.2020.100674.
  • R. Ahmadi, F. Monadinia, and M. Maleki, “Passive/active photovoltaic-thermal (PVT) system implementing infiltrated phase change material (PCM) in PS-CNT foam,” Sol. Energy Mater. Sol. Cells, vol. 222, pp. 110942, 2021. DOI: 10.1016/j.solmat.2020.110942.
  • P. Wang, K. Vafai, and D. Y. Liu, “Analysis of radiative effect under local thermal non-equilibrium conditions in porous media-application to a solar air receiver,” Numer. Heat Transf. J., vol. 65, no. 10, pp. 931–948, 2014. DOI: 10.1080/10407782.2013.850917.
  • H. Nemati, V. Souriaee, M. Habibi, and K. Vafai, “Pore-scale and volume-averaged simulations of phase change material melting; A comparison between local and non-local thermal equilibrium,” Numer. Heat Transf. J., pp. 1–15, 2023. DOI: 10.1080/10407782.2023.2175086.
  • K. M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, and K. Vafai, “Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology,” Int. J. Heat Mass Transf., vol. 105, pp. 811–825, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.008.
  • P. Wang and K. Vafai, “Modeling and analysis of an efficient porous media for a solar absorber with a variable pore structure,” ASME J. Sol. Energy Eng., vol. 139, no. 5, pp. 051005, 2017. DOI: 10.1115/1.4037161.
  • P. Wang, J. B. Li, K. Vafai, L. Zhao, and L. Zhou, “Thermo-fluid optimization of a solar porous absorber with a variable pore structure,” ASME J. Sol. Energy Eng., vol. 139, no. 5, pp. 051012, 2017. DOI: 10.1115/1.4037350.
  • Z. Su, S. Gu, and K. Vafai, “Modeling and simulation of ray tracing for compound Parabolic thermal solar collector,” Int. Commun. Heat Mass Transf., vol. 87, pp. 169–174, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.06.021.
  • M. Siritan, K. Vafai, N. Kammuang-Lue, P. Terdtoon, and P. Sakulchansatjatai, “An innovative design for a solar water heating system utilizing a flat-shaped heat pipe,” ASME J. Sol. Energy Eng., vol. 145, no. 5, pp. 051002, 2023. DOI: 10.1115/1.4056624.
  • K. Khanafer and K. Vafai, “A review on the applications of nanofluids in solar energy field,” Renew. Energy, vol. 123, pp. 398–406, 2018. DOI: 10.1016/j.renene.2018.01.097.
  • A. Ghahremannezhad, H. Xu, M. R. Salimpour, P. Wang, and K. Vafai, “Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams,” Appl. Therm. Eng., vol. 179, pp. 115731, 2020. DOI: 10.1016/j.applthermaleng.2020.115731.
  • A. Albojamal, H. Hamzah, and K. Vafai, “Energy storage analysis of phase change materials (PCMs) integrated with thermal conductivity enhancers (TCEs),” Numer. Heat Transf. J., vol. 83, no. 1, pp. 1–18, 2023. DOI: 10.1080/10407782.2022.2147609.
  • M. Alhuyi Nazari et al., “A review of nanomaterial incorporated phase change materials for solar thermal energy storage,” Sol. Energy, vol. 228, pp. 725–743, 2021. DOI: 10.1016/j.solener.2021.08.051.
  • M. A. Alim, Z. Tao, M. J. Abden, A. Rahman, and B. Samali, “Improving performance of solar roof tiles by incorporating phase change material,” Sol. Energy, vol. 207, pp. 1308–1320, 2020. DOI: 10.1016/j.solener.2020.07.053.
  • Z. Ding, W. Wu, Y. Chen, and Y. Li, “Dynamic simulation and parametric study of solar water heating system with phase change materials in different climate zones,” Sol. Energy, vol. 205, pp. 399–408, 2020. DOI: 10.1016/j.solener.2020.05.075.
  • A. Waqas, J. Ji, A. Bahadar, L. Xu, and M. Zeshan, “Thermal management of conventional photovoltaic module using phase change materials—An experimental investigation,” Energy Explor. Exploit., vol. 37, no. 5, pp. 1516–1540, 2019. DOI: 10.1177/0144598718795697.
  • J. Duan, “The PCM-porous system used to cool the inclined PV panel,” Renew. Energy, vol. 180, pp. 1315–1332, 2021. DOI: 10.1016/j.renene.2021.08.097.
  • F. Hachem et al., “Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance,” Renew. Energy, vol. 107, pp. 567–575, 2017. DOI: 10.1016/j.renene.2017.02.032.
  • C. Zhang et al., “Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins,” Energy, vol. 263, pp. 125669, 2023. DOI: 10.1016/j.energy.2022.125669.
  • M. Huang, P. Eames, and B. Norton, “Thermal regulation of building-integrated photovoltaics using phase change materials,” Int. J. Heat Mass Transf., vol. 47, no. 1213, pp. 2715–2733, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.11.015.
  • Z. Luo et al., “Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM,” Energy Convers. Manage., vol. 149, pp. 416–423, 2017. DOI: 10.1016/j.enconman.2017.07.046.
  • I. Zarma, M. Ahmed, and S. Ookawara, “Enhancing the performance of concentrator photovoltaic systems using nanoparticle-phase change material heat sinks,” Energy Convers. Manage., vol. 179, pp. 229–242, 2019. DOI: 10.1016/j.enconman.2018.10.055.
  • A. Shaito, M. Hammoud, F. Kawtharani, A. Kawtharani, and H. Reda, “Power enhancement of a PV module using different types of phase change materials,” Energies, vol. 14, no. 16, pp. 5195, 2021. DOI: 10.3390/en14165195.
  • M. J. Ashraf, H. M. Ali, H. Usman, and A. Arshad, “Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials,” Int. J. Heat Mass Transf., vol. 115, pp. 251–263, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.114.
  • H. Shakibi, S. Afzal, A. Shokri, and B. Sobhani, “Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells,” J. Energy Storage, vol. 51, pp. 104466, 2022. DOI: 10.1016/j.est.2022.104466.
  • S. Aneli, R. Arena, and A. Gagliano, “Numerical simulations of a PV module with phase change material (PV-PCM) under variable weather conditions,” IJHT., vol. 39, no. 2, pp. 643–652, 2021. DOI: 10.18280/ijht.390236.
  • M. Nouira and H. Sammouda, “Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions,” Appl. Therm. Eng., vol. 141, pp. 958–975, 2018. DOI: 10.1016/j.applthermaleng.2018.06.039.
  • R. Elavarasan, K. Velmurugan, U. Subramaniam, A. Kumar, and D. Almakhles, “Experimental investigations conducted for the characteristic study of OM29 phase change material and Its incorporation in photovoltaic panel,” Energies, vol. 13, no. 4, pp. 897, 2020. DOI: 10.3390/en13040897.
  • J. A. Duffie, W. A. Beckman, and N. Blair, Solar Engineering of Thermal Processes, Photovoltaics and Wind, 5th ed., New Jersey: Wiley, 2020.
  • T. Khatib and W. Elmenreich, Modeling of Photovoltaic Systems Using MATLAB. New Jersey: Wiley, 2016.
  • S. Armstrong and W. G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditions,” Appl. Therm. Eng., vol. 30, no. 1112, pp. 1488–1495, 2010. DOI: 10.1016/j.applthermaleng.2010.03.012.
  • C. J. Smith, P. M. Forster, and R. Crook, “Global analysis of photovoltaic energy output enhanced by phase change material cooling,” Appl. Energy, vol. 126, pp. 21–28, 2014. DOI: 10.1016/j.apenergy.2014.03.083.
  • J. A. Mackenzie and M. L. Robertson, “The Numerical solution of one-dimensional phase change problems using an adaptive moving mesh method,” J. Comput. Phys., vol. 161, no. 2, pp. 537–557, 2000. DOI: 10.1006/jcph.2000.6511.
  • R. T. Tenchev, J. A. Mackenzie, T. J. Scanlon, and M. T. Stickland, “Finite element moving mesh analysis of phase change problems with natural convection,” Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 597–612, 2005. DOI: 10.1016/j.ijheatfluidflow.2005.03.003.
  • P. Nithiarasu, R. W. Lewis, and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Mass Transfer, 2nd ed. Chichester, West Sussex: Wiley, 2016.
  • M. J. Huang, P. C. Eames, and B. Norton, “Comparison of a small-scale 3D PCM thermal, control model with a validated 2D PCM thermal control model,” Sol. Energy Mater. Solar Cells, vol. 90, no. 13, pp. 1961–1972, 2006. DOI: 10.1016/j.solmat.2006.02.001.
  • M. J. Huang, P. C. Eames, B. Norton, and N. J. Hewitt, “Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 7, pp. 1598–1603, 2011. DOI: 10.1016/j.solmat.2011.01.008.
  • P. H. Biwole, P. Eclache, and F. Kuznik, “Phase-change materials to improve solar panel’s performance,” Energy Build., vol. 62, pp. 59–67, 2013. DOI: 10.1016/j.enbuild.2013.02.059.
  • M. B. Elsheniti, M. A. Hemedah, M. M. Sorour, and W. M. El-Maghlany, “Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM,” Energy Convers. Manage., vol. 205, pp. 112456, 2020. DOI: 10.1016/j.enconman.2019.112456.
  • H. J. Alqallaf and E. M. Alawadhi, “Concrete roof with cylindrical holes containing PCM to reduce the heat gain,” Energy Build., vol. 61, pp. 73–80, 2013. DOI: 10.1016/j.enbuild.2013.01.041.
  • R. H. Myers and D. C. Montgomery eds., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed. Hoboken, NJ: Anderson-Cook, Wiley, 2009.
  • W. Zhao, J. Liu, X. Li, Q. Yang, and Y. Chen, “A moving kriging interpolation response Surface method for structural reliability analysis,” Comput. Model. Eng. Sci., vol. 93, no. 6, pp. 469–488, 2013.
  • R. Baetens, B. P. Jelle, and A. Gustavsen, “Phase change materials for building applications: A state-of-the-art review,” Energy Build., vol. 42, no. 9, pp. 1361–1368, 2010. DOI: 10.1016/j.enbuild.2010.03.026.
  • V. Karthikeyan, C. Sirisamphanwong, S. Sukchai, S. K. Sahoo, and T. Wongwuttanasatian, “Reducing PV module temperature with radiation based PV module incorporating composite phase change material,” J. Energy Storage, vol. 29, pp. 101346, 2020. DOI: 10.1016/j.est.2020.101346.
  • L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1675–1695, 2011. DOI: 10.1016/j.rser.2010.11.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.