Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
100
Views
2
CrossRef citations to date
0
Altmetric
Articles

Magnetic dipole dynamics on Reiner–Philippoff boundary layer flow

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1691-1705 | Received 08 Mar 2023, Accepted 25 Apr 2023, Published online: 17 May 2023

References

  • T. Y. Na, “Boundary layer flow of Reiner-Philippoff fluids,” Int. J. Non-Linear Mech., vol. 29, no. 6, pp. 871–877, 1994. DOI: 10.1016/0020-7462(94)90059-0.
  • I. Waini et al., “Brownian and thermophoresis diffusion effects on magnetohydrodynamic Reiner-Philippoff nanofluid flow past a shrinking sheet,” Alex. Eng. J., vol. 67, pp. 183–192, 2023. DOI: 10.1016/j.aej.2022.12.056.
  • N. S. Khashi’ie et al., “Magnetohydrodynamic and viscous dissipation effects on radiative heat transfer of non-newtonian fluid flow past a nonlinearly shrinking sheet: Reiner–Philippoff model,” Alex. Eng. J., vol. 61, no. 10, pp. 7605–7617, 2022. DOI: 10.1016/j.aej.2022.01.014.
  • M. E. Nasr et al., “Analysis of non-linear radiation and activation energy analysis on hydromagnetic Reiner-Philippoff fluid flow with Cattaneo-Christov double diffusions,” Mathematics, vol. 10, no. 9, pp. 1534, 2022. DOI: 10.3390/math10091534.
  • A. Ahmed, “Flow of Reiner-Philippoff based nano-fluid past a stretching sheet,” J. Mol. Liq., vol. 219, pp. 643–646, 2016.
  • T. Sajid, M. Sagheer, and S. Hussain, “Impact of temperature-dependent heat source/sink and variable species diffusivity on radiative Reiner–Philippoff fluid,” Math. Probl. Eng., vol. 2020, pp. 1–16, 2020. DOI: 10.1155/2020/9701860.
  • Y. O. Tijani, S. D. Oloniiju, K. B. Kasali, and M. T. Akolade, “Nonsimilar solution of a boundary layer flow of a Reiner–Philippoff fluid with nonlinear thermal convection,” Heat Transf., vol. 51, no. 6, pp. 5659–5678, 2022. DOI: 10.1002/htj.22564.
  • B. Mallikarjuna, S. K. C. Yathiraju, S. K. Chakravarthy, R. R. Ayyaz, and S. A. Shehzad, “Spectral-quasi-linearization method and multiple regression analysis of Reiner-Philippoff fluid flow,” J. Appl. Math. Mech., vol. 1200, pp. 113222, 2021.
  • T. Sajid, S. Tanveer, M. Munsab, and Z. Sabir, “Impact of oxytactic microorganisms and variable species diffusivity on bloo-gold Reiner–Philippoff nanofluid,” Appl. Nanosci., vol. 11, no. 1, pp. 321–333, 2021. DOI: 10.1007/s13204-020-01581-x.
  • K. S. Yam, S. D. Harris, D. B. Ingham, and I. Pop, “Boundary-layer flow of Reiner–Philippoff fluids past a stretching wedge,” Int. J. Non-Linear Mech., vol. 44, no. 10, pp. 1056–1062, 2009. DOI: 10.1016/j.ijnonlinmec.2009.08.006.
  • P. Xiong, Y. Chu, M. I. Khan, S. A. Khan, and S. Z. Abbas, “Entropy optimized Darcy-Forchheimer flow of Reiner-Philippoff fluid with chemical reaction,” Comput. Theor. Chem., vol. 1200, pp. 113222, 2021. DOI: 10.1016/j.comptc.2021.113222.
  • M. I. Khan et al., “Optimized framework for Reiner–Philippoff nanofluid with improved thermal sources and Cattaneo–Christov modifications: A numerical thermal analysis,” Int. J. Mod. Phys. B, vol. 1, pp. 2150083, 2020.
  • A. Ahmad, M. Qasim, and S. Ahmed, “Flow of Reiner–Philippoff fuid over a stretching sheet with variable thickness,” J Braz. Soc. Mech. Sci. Eng., vol. 39, no. 11, pp. 4469–4473, 2017. DOI: 10.1007/s40430-017-0840-7.
  • M. N. Khan and S. Nadeem, “MHD stagnation point flow of a Maxwell nanofluid over a shrinking sheet (multiple solution),” Heat Transf., vol. 50, no. 5, pp. 4729–4743, 2021. DOI: 10.1002/htj.22098.
  • S. Ahmad, M. N. Khan, and S. Nadeem, “Mathematical analysis of heat and mass transfer in a Maxwell fluid with double stratification,” Phys. Scr., vol. 96, no. 2, pp. 025202, 2021. DOI: 10.1088/1402-4896/abcb2a.
  • N. Sene, “Solution procedure for fractional Casson fluid model considered with heat generation and chemical reaction,” Sustainability, vol. 15, no. 6, pp. 5306, 2023. DOI: 10.3390/su15065306.
  • S. Ahmad, S. Nadeem, N. Muhammad, and M. N. Khan, “Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1187–1199, 2021. DOI: 10.1007/s10973-020-09504-2.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: Effect of thermal radiation and chemical reaction,” Numer. Heat Transf. Part B: Fund., pp. 1–17, 2023.
  • H. I. Andersson and O. A. Valnes, “Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole,” Acta Mech., vol. 128, no. 12, pp. 39–47, 1998. DOI: 10.1007/BF01463158.
  • A. Zeeshan, A. Majeed, and R. Ellahi, “Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation,” J. Mol. Liq., vol. 215, pp. 549–554, 2016. DOI: 10.1016/j.molliq.2015.12.110.
  • M. Waqas, J. Shagufta, T. Hayat, S. A. Shehzad, and A. Alsaedi, “Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy,” Int. Commun. Heat Mass Transf., vol. 112, pp. 104401, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104401.
  • B. C. Prasannakumara, “Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect,” Partial Differ. Equ. Appl. Math., vol. 4, pp. 100064, 2021. DOI: 10.1016/j.padiff.2021.100064.
  • I. Misbah and A. Muhammad, “Simulation of magnetic dipole and dual stratification in radiative flow of ferromagnetic Maxwell fluid,” Heliyon, vol. 5, no. 4, pp. e01465, 2019.
  • Y. Tabassam, H. Tasawar, I. K. Muhammad, I. Maria, and A. Ahmad, “Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions,” J. Mol. Liq., vol. 223, pp. 1000–1005, 2016.
  • W. Muhammad, J. Shagufta, H. Tasawar, M. J. Khan, and A. Alsaedi, “Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation,” J. Magnet. Magnet. Mater., vol. 485, pp. 197–204, 2019. DOI: 10.1016/j.jmmm.2019.03.040.
  • M. Akolade, T. Adeosun, and J. Olabode, “Influence of thermophysical features on MHD squeezed flow of dissipative Casson fluid with chemical and radiative effects,” J. Appl. Comput. Mech., vol. 7, no. 4, pp. 1999–2009, 2021.
  • A. T. Adeosun, J. A. Gbadeyan, and R. S. Lebelo, “Heat transport of Casson nanofluid flow over a melting riga plate embedded in a porous medium,” JERA., vol. 55, pp. 15–27, 2021. DOI: 10.4028/www.scientific.net/JERA.55.15.
  • Y. O. Tijani, M. T. Akolade, H. A. Ogunseye, A. T. Adeosun, and O. Farotimi, “On the generalized Fick’s and Fourier’s laws for an unsteady Casson-Williamson fluids over a stretching surface: A spectral approach,” J. Nanofluids, vol. 12, no. 1, pp. 91–103, 2023. DOI: 10.1166/jon.2023.1914.
  • T. A. Adeshina and C. U. Joel, “Effect of the variable electrical conductivity on the thermal stability of the MHD reactive squeezed fluid flow through a channel by a spectral collocation approach,” Partial Differ. Equ. Appl. Math., vol. 5, pp. 100256, 2022.
  • E. O. Fatunmbi, A. T. Adeosun, and S. O. Salawu, “Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties,” Partial Differ. Equ. Appl. Math., vol. 4, pp. 100152, 2021. DOI: 10.1016/j.padiff.2021.100152.
  • M. J. Uddin, M. N. Kabir, O. A. Bég, and Y. Alginahi, “Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction,” Proc. Inst. Mech. Eng. Part N: J. Nanomater. Nanoeng. Nanosyst., vol. 232, no. 4, pp. 109–122, 2018. DOI: 10.1177/2397791418809795.
  • S. S. Motsa, “On the practical use of the spectral homotopy analysis method and local linearisation method for unsteady boundary-layer flows caused by an impulsively stretching plate,” Numer Algor, vol. 66, no. 4, pp. 865–883, 2014. DOI: 10.1007/s11075-013-9766-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.