Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 15
88
Views
7
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of the effect of height and number of heaters on heat transfer during natural convection in a cubic enclosure filled with nanofluid

, &
Pages 2397-2418 | Received 28 Mar 2023, Accepted 02 Jun 2023, Published online: 25 Jun 2023

References

  • Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/s0017-9310(03)00156-x.
  • U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, Vol. 66, D. A. Siginer and H. P. Wang, Eds. New York: ASME, 1995, pp. 99–105.
  • M. Rahman, M. M. Billah, A. T. M. M. Rahman, M. A. Kalam, and A. Ahsan, “Numerical investigation of heat transfer enhancement of nanofluids in an inclined lid-driven triangular enclosure,” Int. Commun. Heat Mass Transf., vol. 38, no. 10, pp. 1360–1367, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.08.011.
  • F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.04.009.
  • L. Barhoi, R. C. Borah, and S. Singh, “Natural convection in a nano-fluid filled square enclosure,” KEM., vol. 847, pp. 114–119, 2020. DOI: 10.4028/www.scientific.net/KEM.847.114.
  • V. Ganesh, S. Javed, Q. M. Al-Mdallal, R. Kalaivanan, and A. J. Chamkha, “Numerical study of heat generating γ Al2O3– H2O nanofluid inside a square cavity with multiple obstacles of different shapes,” Heliyon, vol. 6, no. 12, pp. e05752, 2020. DOI: 10.1016/j.heliyon.2020.e05752.
  • Garoosi, S. Garoosi, and K. Hooman, “Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model,” Powder Technol., vol. 268, pp. 279–292, 2014. DOI: 10.1016/j.powtec.2014.08.006.
  • F. Almensoury, A. S. Hashim, H. K. Hamzah, and F. H. Ali, “Numerical investigation of natural convection of a non‐Newtonian nanofluid in an F‐shaped porous cavity,” Heat Transf., vol. 50, no. 3, pp. 2403–2426, 2021. DOI: 10.1002/htj.21984.
  • Mahmoodi and S. M. Hashemi, “Numerical study of natural convection of a nanofluid in C-shaped enclosures,” Int. J. Therm. Sci., vol. 55, pp. 76–89, 2012. DOI: 10.1016/j.ijthermalsci.2012.01.002.
  • Siavashi and A. Rostami, “Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media,” Int. J. Mech. Sci., vol. 133, pp. 689–703, 2017. DOI: 10.1016/j.ijmecsci.2017.09.031.
  • Garoosi, B. Rohani, and M. M. Rashidi, “Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating,” Powder Technol., vol. 275, pp. 304–321, 2015. DOI: 10.1016/j.powtec.2015.02.015.
  • Putra, W. Roetzel, and S. K. Das, “Natural convection of nano-fluids,” Heat Mass Transf., vol. 39, no. 8–9, pp. 775–784, 2003. DOI: 10.1007/s00231-002-0382-z.
  • J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, “Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study,” Int. J. Therm. Sci., vol. 49, no. 8, pp. 1345–1353, 2010. DOI: 10.1016/j.ijthermalsci.2010.02.013.
  • Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transf., vol. 47, no. 24, pp. 5181–5188, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.07.012.
  • Shi, Y. He, Y. Hu, and X. Wang, “Controllable natural convection in a rectangular enclosure filled with Fe3O4@CNT nanofluids,” Int. J. Heat Mass Transf., vol. 140, pp. 399–409, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.104.
  • Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • Haddad, E. Abu-Nada, H. F. Oztop, and A. Mataoui, “Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?” Int. J. Therm. Sci., vol. 57, pp. 152–162, 2012. DOI: 10.1016/j.ijthermalsci.2012.01.016.
  • Corcione, M. Cianfrini, and A. Quintino, “Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties,” Int. J. Therm. Sci., vol. 71, pp. 182–195, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.005.
  • J. Ho, D.-S. Chen, W.-M. Yan, and O. Mahian, “Buoyancy-driven flow of nanofluids in a cavity considering the Ludwig–Soret effect and sedimentation: Numerical study and experimental validation,” Int. J. Heat Mass Transf., vol. 77, pp. 684–694, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.059.
  • Albojamal and K. Vafai, “Analysis of single phase, discrete and mixture models, in predicting nanofluid transport,” Int. J. Heat Mass Transf., vol. 114, pp. 225–237, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.030.
  • Kalteh et al., “Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink,” Appl. Therm. Eng., vol. 36, pp. 260–268, 2012. DOI: 10.1016/j.applthermaleng.2011.10.023.
  • V. Ganesh, Q. M. Al-Mdallal, H. F. Öztop, and R. Kalaivanan, “Analysis of natural convection for a Casson-based multiwall carbon nanotube nanofluid in a partially heated wavy enclosure with a circular obstacle in the presence of thermal radiation,” J. Adv. Res., vol. 39, pp. 167–185, 2022. DOI: 10.1016/j.jare.2021.10.006.
  • V. Ganesh, Q. M. Al-Mdallal, G. Hirankumar, R. Kalaivanan, and A. J. Chamkha, “Buoyancy-driven convection of MWCNT – Casson nanofluid in a wavy enclosure with a circular barrier and parallel hot/cold fins,” Alex. Eng. J., vol. 61, no. 4, pp. 3249–3264, 2022. DOI: 10.1016/j.aej.2021.08.055.
  • V. Ganesh, Q. M. Al-Mdallal, G. Hirankumar, and R. Kalaivanan, “Impact of a hot constructal tree-shaped fin on the convection flow of single wall carbon nanotube water nanofluid inside a sinusoidal enclosure,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106279, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106279.
  • V. Ganesh, Q. M. Al-Mdallal, G. Hirankumar, and R. Kalaivanan, “Effects of vertically embedded parallel hot elliptic obstacles inside a fully sinusoidal enclosure filled with SWCNT–water nanofluid,” Int. J. Thermofluids, vol. 17, pp. 100276, 2023. DOI: 10.1016/j.ijft.2022.100276.
  • Keshavarz Moraveji and E. Esmaeili, “Comparison between single-phase and two-phases CFD modeling of laminar forced convection flow of nanofluids in a circular tube under constant heat flux,” Int. Commun. Heat Mass Transf., vol. 39, no. 8, pp. 1297–1302, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.07.012.
  • S. Astanina, E. Abu-Nada, and M. A. Sheremet, “Combined effects of thermophoresis, brownian motion, and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity,” J. Heat Transf., vol. 140, no. 8, pp. 082401, 2018. DOI: 10.1115/1.4039217.
  • R. Ali, A. I. Alsabery, N. A. Bakar, and R. Roslan, “Mixed convection in a double lid-driven cavity filled with hybrid nanofluid by using finite volume method,” Symmetry, vol. 12, no. 12, pp. 1977, 2020. DOI: 10.3390/sym12121977.
  • Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids Surf. A: Physicochem. Eng. Asp., vol. 388, no. 1–3, pp. 41–48, 2011. DOI: 10.1016/j.colsurfa.2011.08.005.
  • I. Tlili, “Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid,” Math. Sci., 2021. DOI: 10.1007/s40096-021-00377-6.
  • V. Krishna, S. M. Kumar, R. Muthalagu, S. P. Kumar, and R. Mounika, “Numerical study of fluid flow and heat transfer for flow of Cu-Al2O3-water hybrid nanofluid in a microchannel heat sink,” Mater. Today: Proc., vol. 49, pp. 1298–1302, 2022. DOI: 10.1016/j.matpr.2021.06.385.
  • J. Chamkha, I. V. Miroshnichenko, and M. A. Sheremet, “Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity,” J. Therm. Sci. Eng. Appl., vol. 9, no. 4, pp. 041004, 2017. DOI: 10.1115/1.4036203.
  • A. Mansour, M. A. Bakeir, and A. Chamkha, “Natural convection inside a C-shaped nanofluid-filled enclosure with localized heat sources,” Int. J. Numer. Methods Heat Fluid Flow, vol. 24, no. 8, pp. 1954–1978, 2014. DOI: 10.1108/HFF-06-2013-0198.
  • R. Kefayati, “Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM,” Int. Commun. Heat Mass Transf., vol. 53, pp. 139–153, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.02.026.
  • Z. Saghir, A. Ahadi, A. Mohamad, and S. Srinivasan, “Water aluminum oxide nanofluid benchmark model,” Int. J. Therm. Sci., vol. 109, pp. 148–158, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.002.
  • Fattahi, M. Farhadi, K. Sedighi, and H. Nemati, “Lattice Boltzmann simulation of natural convection heat transfer in nanofluids,” Int. J. Therm. Sci., vol. 52, pp. 137–144, 2012. DOI: 10.1016/j.ijthermalsci.2011.09.001.
  • Karimipour, A. H. Nezhad, A. Behzadmehr, S. Alikhani, and E. Abedini, “Periodic mixed convection of a nanofluid in a cavity with top lid sinusoidal motion,” Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci., vol. 225, no. 9, pp. 2149–2160, 2011. DOI: 10.1177/0954406211404634.
  • Snoussi, R. Chouikh, N. Ouerfelli, and A. Guizani, “Numerical simulation of heat transfer enhancement for natural convection in a cubical enclosure filled with Al2O3/water and Ag/water nanofluids,” Phys. Chem. Liq., vol. 54, no. 6, pp. 703–716, 2016. DOI: 10.1080/00319104.2016.1149173.
  • J. Krane and J. Jessee, “Some detailed field measurements for a natural convection flow in a vertical square enclosure,” presented at the Proc. First ASME-JSME Therm. Eng. Joint Conf., Vol. 1, 1983, pp. 323–329.
  • Issakhov, P. Omarova, and A. Issakhov, “Numerical study of thermal influence to pollutant dispersion in the idealized urban street road,” Air Qual. Atmos. Health, vol. 13, no. 9, pp. 1045–1056, 2020. DOI: 10.1007/s11869-020-00856-0.
  • Issakhov and P. Omarova, “Modelling and analysis of the effects of barrier height on automobiles emission dispersion,” J. Clean. Prod., vol. 296, pp. 126450, 2021. DOI: 10.1016/j.jclepro.2021.126450.
  • Issakhov and Y. Zhandaulet, “Numerical simulation of thermal pollution zones’ formations in the water environment from the activities of the power plant,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 279–299, 2019. DOI: 10.1080/19942060.2019.1584126.
  • Issakhov, A. Alimbek, and A. Issakhov, “A numerical study for the assessment of air pollutant dispersion with chemical reactions from a thermal power plant,” Eng. Appl. Comput. Fluid Mech., vol. 14, no. 1, pp. 1035–1061, 2020. DOI: 10.1080/19942060.2020.1800515.
  • Issakhov, A. Alimbek, and Y. Zhandaulet, “The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study,” J. Clean. Prod., vol. 282, pp. 125239, 2021. DOI: 10.1016/j.jclepro.2020.125239.
  • Issakhov et al., “A numerical assessment of social distancing of preventing airborne transmission of COVID-19 during different breathing and coughing processes,” Sci. Rep., vol. 11, no. 1, pp. 9412, 2021. DOI: 10.1038/s41598-021-88645-2.
  • Issakhov, A. Abylkassymova, and A. Issakhov, “Assessment of the influence of the barriers height and trees with porosity properties on the dispersion of emissions from vehicles in a residential area with various types of building developments,” J. Clean. Prod., vol. 366, pp. 132581, 2022. DOI: 10.1016/j.jclepro.2022.132581.
  • Issakhov and A. Borsikbayeva, “The impact of a multilevel protection column on the propagation of a water wave and pressure distribution during a dam break: Numerical simulation,” J. Hydrol., vol. 598, pp. 126212, 2021. DOI: 10.1016/j.jhydrol.2021.126212.
  • A. Issakhov, A. Alimbek, and A. Abylkassymova, “Numerical modeling of water pollution by products of chemical reactions from the activities of industrial facilities at variable and constant temperatures of the environment,” J. Contam. Hydrol., vol. 252, pp. 104116, 2023. DOI: 10.1016/j.jconhyd.2022.104116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.