Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 15
173
Views
4
CrossRef citations to date
0
Altmetric
Articles

Electroosmosis-driven heat transfer in Jeffrey fluid flow through tapered porous channel

, & ORCID Icon
Pages 2473-2497 | Received 15 Mar 2023, Accepted 09 Jun 2023, Published online: 26 Jun 2023

References

  • S. C. R. Dennis and F. T. Smith, “Steady flow through channel with a symmetrical contraction in the form of step,” Proc. R. Soc. Lond., vol. 372, pp. 393–414, 1980. DOI: 10.1098/rspa.1980.011.
  • G. P. Donald and G. B. James, “An experimental investigation of oscillating flow in a tapered channel,” J. Fluid Mech., vol. 172, pp. 47–61, 1986. DOI: 10.1017/S0022112086001647.
  • T. P. Chiang and T. W. Sheu, “Bifurcation of flow through plane symmetric channel contraction,” J. Fluids Eng., vol. 124, no. 2, pp. 444–451, 2002. DOI: 10.1115/1.1467643.
  • H. Jeffreys, “The flow of water in an inclined channel of rectangular section,” J. Sci., vol. 49, no. 293, pp. 793–807, 1925. DOI: 10.1080/14786442508634662.
  • H. J. D. Vriend, “A mathematical model on steady flow in curved shallow channels,” J. Hydraul. Res., vol. 15, no. 1, pp. 37–54, 2010. DOI: 10.1080/00221687709499748.
  • T. W. Latham, “Fluid motion in peristaltic pump,” M.S. thesis, Massachusetts Institute of Technology, 1966.
  • R. Roos and P. S. Lykoudis, “The fluid mechanics of the ureter with an inserted catheter,” J. Fluid Mech., vol. 46, no. 4, pp. 625–630, 1971. DOI: 10.1017/S0022112071000752.
  • S. Boyarsky, “Surgical physiology of the renal pelvis,” Monogr. Surg. Sci., vol. 1, pp. 173–213, 1964.
  • M. Y. Jaffrin and A. H. Shapiro, “Peristaltic pumping,” Annu. Rev. Fluid Mech., vol. 3, no. 1, pp. 13–37, 1971. DOI: 10.1146/annurev.fl.03.01017.000305.
  • M. Mishra and R. Adabala, “Peristaltic transport of a Newtonian fluid in an asymmetric channel,” Indian Inst. Sci., vol. 54, no. 3, pp. 532–550, 2003. DOI: 10.1007/s00033-003-1070-7.
  • S. Nadeem and S. Akram, “Influence of inclined magnetic field on peristaltic flow of Williamson fluid model in symmetric or asymmetric channel,” Math. Comput. Model., vol. 52, no. 1–2, pp. 107–119, 2010. DOI: 10.1016/j.mcm.2010.02.001.
  • S. Noreen, “Effects of Joule heating and convective boundary conditions on magnetohydrodynamic peristaltic flow of couple-stress fluid,” J. Heat Transf., vol. 138, no. 9, pp. 94502, 2016. DOI: 10.1115/1.4033419.
  • M. Qasim and M. I. Afridi, “Effects of energy dissipation and variable thermal conductivity on entropy generation rate in mixed convection flow,” J. Therm. Sci. Eng. Appl., vol. 10, no. 3, pp. 44501, 2018. DOI: 10.1088/1572-9494/ab6908.
  • A. Alsaedi, Z. Nisar, T. Hayat, and B. Ahmad, “Analysis of mixed convection and hall current for MHD peristaltic transport of nanofluid with complaint wall,” Int. Commun. Heat Transf., vol. 121, pp. 105121, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105121.
  • R. GreenKorn, “Steady flow through porous media,” AIChE J., vol. 27, no. 4, pp. 529–545, 1981. DOI: 10.1016/0096-3003(94)90083-3.
  • F. Spera, A. Borgia, J. Strimple, and M. Feigenson, “Rheology of melts and magmatic suspensions: 1. design and calibration of concentric cylinder viscometer with application to rhyolitic nagma,” J. Geophys. Res., vol. 93, no. B9, pp. 10273–10294, 1988. DOI: 10.1029/JB093iB09p10273.
  • V. M. Starov and V. G. Zhdanov, “Effective viscosity and permeability of porous media,” Colloids Surf. A, vol. 192, no. 1–3, pp. 363–375, 2001. DOI: 10.1016/S0927-7757(01)00737-3.
  • H. Hanifa, K. Ilyas, and S. Sharidan, “MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium,” Phys. Scr., vol. 94, no. 12, pp. 125208, 2019. DOI: 10.1088/1402-4896/ab36e1.
  • K. H. Hosseinzadeh, S. O. Roghani, A. R. Mogharrebi, A. Asadi, and D. D. Ganji, “Optimization of hybrid nanoparticles with mixture fuid fow in an octagonal porous medium by efect of radiation and magnetic feld,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1413–1424, 2021. DOI: 10.1007/s10973-020-10376-9.
  • M. K. Hubbert, “Darcy’s Law and the field equations of the flow of underground fluids,” J. Pet. Technol., vol. 207, no. 1, pp. 20–26, 1956. DOI: 10.2118/749-G.
  • L. P. Dake, A Hand Book on Developments in Petroleum Science, vol. 8, The Hague, The Netherlands,1978, pp. 103–130.
  • M. E. Rosti, S. Pramanik, L. Brandt, and D. Mitra, “The breakdown of Darcy’s law in a soft porous material,” R. Soc. Chem., vol. 16, no. 4, pp. 939–944, 2020. DOI: 10.1039/c9sm01678c.
  • M. Sheikholeslami, “Cuo-water nanofluid free convection in a porous cavity considering Darcy law,” Eur. Phys. J. Plus, vol. 132, no. 1, pp. 132, 2017. DOI: 10.1140/epjp/i2017-11330-3.
  • M. I. Afridi, M. Qasim, and O. D. Makinde, “Entropy generation due to heat and mass transfer in a flow of dissipative elastic fluid through a porous medium,” J. Heat Transf., vol. 141, no. 2, pp. 22002, 2019. DOI: 10.1115/1.4041951.
  • T. Dastan, “Forchheimer model for non-Darcy flow in porous media and fractures,” M. Sc. thesis, Imperial College London, 2011.
  • Y. S. Wu, “Non-Darcy displacements of immiscible fluids in porous media,” Water Resour. Res., vol. 37, no. 12, pp. 2943–2950, 2001. DOI: 10.1029/2001WR000389.
  • A. S. Begum, N. Nithyadevi, H. F. Ztop, and K. Al-Salem, “Numerical simulation of MHD mixed convection in a nanofluid filled nondarcy porous enclosure,” Int. J. Mech. Sci., vol. 130, pp. 154–166, 2017. DOI: 10.1016/j.ijmecsci.2017.06.008.
  • S. Noreen and A. Qurat, “Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping,” J. Therm. Anal. Calorim., 6, vol. 137 pp. 1991–2006, 2019. DOI: 10.1007/s10973-019-08111-0.
  • K. K. Imomnazarov, “Modofied Darcy’s law for conducting porous media,” Math. Comput. Model., vol. 40, no. 1–2, pp. 5–10, 2004. DOI: 10.1016/j.mcm.2004.01.001.
  • S. Gisinger, A. Dornbrack, and J. Schrottle, “A modified Darcy’s law,” J. Theor. Comput. Fluid Dyn., vol. 29, no. 4, pp. 343–347, 2015. DOI: 10.1007/s00162-015-0357-6.
  • T. Hayat, S. Farooq, B. Ahmad, and A. Alsaedi, “Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance,” Int. J. Heat Mass Transf., vol. 106, pp. 244–252, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.017.
  • N. A. Khan, S. Khan, and A. Ara, “Flow of micropolar fluid over an off centered rotating disk with modified Darcy’s law,” Propul. Power Res., vol. 6, no. 4, pp. 285–295, 2017. DOI: 10.1016/j.jppr.2017.11.006.
  • N. Imran, M. Javed, M. Sohail, and I. Tlili, “Utilization of modified Darcy’s law in peristalsis with compliant channel, Application to Thermal Science,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 5619–5629, 2020. DOI: 10.1016/j.jmrt.2020.03.087.
  • S. Chakraborty, “Augmentation of peristaltic microflows through electro-osmotic mechanisms,” J. Phys. D: Appl. Phys., vol. 39, no. 24, pp. 5356–5363, 2006. DOI: 10.1088/0022-3727/39/24/037.
  • A. Bandopadhyay, D. Tripathi, and S. Chakraborty, “Electroosmosis-modulated peristaltic transport in microfluidic channels,” Phys. Fluid, vol. 28, no. 5, pp. 52002, 2016. DOI: 10.1063/1.4947115.
  • P. Goswami, J. Chakraborty, A. Bandopadhyay, and S. Chakraborty, “Electrokinetically modulated peristaltic transport of power-law fluids,” Microvasc. Res., vol. 103, pp. 41–54, 2016. DOI: 10.1016/j.mvr.2015.10.004.
  • G. C. Shit, N. K. Ranjit, and A. Sinha, “Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave, a non-Newtonian model,” J. Bionic. Eng., vol. 13, no. 3, pp. 436–448, 2016. DOI: 10.1016/S1672-6529(16)60317-7.
  • D. Tripathi, A. Yadav, and O. A. Beg, “Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis,” Eur. Phys. J. Plus, vol. 132, no. 4, pp. 173, 2017. DOI: 10.1140/epjp/i2017-11416-x.
  • D. Tripathi, B. Shashi, and A. B. Osman, “Electro-osmotic flow in a microchannel containing a porous medium with complex wavy walls,” J. Porous Media, vol. 23, no. 5, pp. 477–495, 2020. DOI: 10.1615/JPorMedia.2020026114.
  • S. Noreen, Qurat-ul-Ain, M. Qasim, and D. Tripathi, "Alteration in Electro-Osmotic flow through a non-Darcy porous medium due to MHD and peristaltic pumping," J Porous Media, vol. 22, no. 13, 1639, 1650, 2019. DOI: 10.1615/JPorMedia.2019026995.
  • S. Noreen, S. Waheed, and D. C. Lu, “Influence of joule heating and wall slip in electroosmotic flow via peristalsis: Second law analysis,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 6, pp. 295, 2020. DOI: 10.1007/s40430-020-02351-0.
  • J. Prakash, D. Tripathi, O. A. Beg, and V. Srivastava, “EMHD Casson hybrid nanofluid flow over an exponentially accelerated rotating porous surface,” J. Porous Media, vol. 25, no. 11, pp. 1–24, 2022. DOI: 10.1615/JPorMedia.2022041050.
  • M. V. Krishna and A. J. Chamkha, “MHD peristaltic rotating flow of a couple stress fluid through a porous medium with wall and slip effects,” Spec. Top. Rev. Porous Media, vol. 10, no. 3, pp. 245–258, 2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2019028609.
  • J. Akram, N. S. Akbar, M. Alansari, and D. Tripathi, “Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel,” Int. Commun. Heat Mass Transf., vol. 136, pp. 106208, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106208.
  • R. Choudhari, K. Ramesh, D. Tripathi, H. Vaidya, and K. V. Prasad, “Heat transfer and electroosmosis driven MHD peristaltic pumping in a microchannel with multiple slips and fluid properties,” Heat Transf., vol. 51, no. 7, pp. 6507–6527, 2022. DOI: 10.1002/htj.22602.
  • M. K. Chaube, A. Yadav, D. Tripathi, and A. B. Osman, “Electroosmotic flow of biorheological micropolar fluids through microfluidic channels,” Korea-Aust. Rheol. J., vol. 30, no. 2, pp. 89–98, 2018. DOI: 10.1007/s13367-018-0010-1.
  • M. K. Chaube, A. Yadav, and D. Tripathi, “Electroosmotically induced alterations in peristaltic microflows of power law fluids through physiological vessels,” J Braz. Soc. Mech. Sci. Eng., vol. 40, no. 9, pp. 423, 2018. DOI: 10.1007/s40430-018-1348-5.
  • S. K. Pandey and M. K. Chaube, “Peristaltic transport of a Maxwell fluid in a channel of varying cross section induced by asymmetric waves: Application to embryo transport within uterine cavity,” J. Mech. Med. Biol., vol. 11, no. 03, pp. 675–690, 2011. DOI: 10.1142/S0219519411003995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.