Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 15
80
Views
7
CrossRef citations to date
0
Altmetric
Articles

A comparative study on pulsating flow of Au + SWCNT/blood and Au + MWCNT/blood based Jeffrey hybrid nanofluid in a vertical porous channel with entropy generation

ORCID Icon, , , ORCID Icon &
Pages 2517-2533 | Received 10 Feb 2023, Accepted 09 Jun 2023, Published online: 09 Jul 2023

References

  • G. Radhakrishnamacharya and K. M. Maiti, “Heat transfer to pulsatile flow in a porous channel,” Int. J. Heat Mass Transf., vol. 20, no. 2, pp. 171–173, 1977. DOI: 10.1016/0017-9310(77)90009-6.
  • C. Wang, “Pulsatile flow in a porous channel,” ASME. J. Appl. Mech., vol. 38, no. 2, pp. 553–555, 1971. DOI: 10.1115/1.3408822.
  • S. O. Adesanya, J. A. Falade, and O. D. Makinde, “Pulsating flow through vertical porous channel with viscouse dissipation effect,” U. P. B. Sci. Bull. Ser. D, vol. 77, no. 1, pp. 25–36, 2015.
  • M. Javed, N. Imran, and A. I. Rao, “Design and testing of varying magnetic field effect in a pulsatility blood flow of viscoelastic material: flexibility analysis in a curved channel,” Heat Transf., vol. 50, no. 6, pp. 6358–6376, 2021. DOI: 10.1002/htj.22175.
  • R. Padma, R. Tamil Selvi, and R. Ponalagusamy, “Analysis of MHD pulsatile flow of Jeffrey fluid in a diseased inclined tapered porous artery exposed to an inclined magnetic field,” J. Phys.: Conf. Ser., vol. 1850, no. 1, pp. 012039, 2021. DOI: 10.1088/1742-6596/1850/1/012039.
  • P. B. Kumar and S. Suripeddi, “A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1465–1474, 2021. DOI: 10.1140/epjs/s11734-021-00057-5.
  • A. M. Ismaeel, M. A. Mansour, F. S. Ibrahim, and F. M. Hady, “Numerical simulation for nanofluid extravasation from a vertical segment of a cylindrical vessel into the surrounding tissue at the microscale,” Appl. Math. Comput., vol. 417, pp. 126758, 2022. DOI: 10.1016/j.amc.2021.126758.
  • M. A. Mansour, S. E. Ahmed, F. M. Hady, F. S. Ibrahim, and A. M. Ismaeel, “Numerical simulation for nanofluid leakage from a single 2D blood vessel,” Alexandria Eng. J., vol. 61, no. 5, pp. 3999–4010, 2022. DOI: 10.1016/j.aej.2021.09.029.
  • N. Datta, D. C. Dalal, and S. K. Mishra, “Unsteady heat transfer to pulsatile flow of a dusty viscous incompressible fluid in a channel,” Int. J. Heat Mass Transf., vol. 36, no. 7, pp. 1783–1788, 1993. DOI: 10.1016/S0017-9310(05)80164-4.
  • Y. Lin et al., “Free convective trickling over a porous medium of fractional nanofluid with MHD and heat source/sink,” Sci. Rep., vol. 12, no. 1, pp. 1–17, 2022. DOI: 10.1038/s41598-022-25063-y.
  • X. Wang, Y. Qiao, H. Qi, and H. Xu, “Numerical study of pulsatile non-Newtonian blood flow and heat transfer in small vessels under a magnetic field,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105930, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105930.
  • N. A. Shah, A. Al-Zubaidi, and S. Saleem, “Study of magnetohydrodynamic pulsatile blood flow through an inclined porous cylindrical tube with generalized time-nonlocal shear stress,” Adv. Math. Phys., vol. 2021, pp. 1–11, 2021. DOI: 10.1155/2021/5546701.
  • M. M. Maskeen, O. U. Mehmood, and A. Zeeshan, “Hydromagnetic solid – liquid pulsatile flow through concentric cylinders in a porous medium,” J. Vis., vol. 21, no. 3, pp. 407–419, 2018. DOI: 10.1007/s12650-017-0468-9.
  • A. Ali, H. Farooq, Z. Abbas, Z. Bukhari, and A. Fatima, “Impact of Lorentz force on the pulsatile flow of a non-Newtonian Casson fluid in a constricted channel using Darcy’s law: a numerical study,” Sci. Rep., vol. 10, no. 1, pp. 1–15, 2020. DOI: 10.1038/s41598-020-67685-0.
  • A. Tiwari and S. S. Chauhan, “Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: a comparative study,” Microvasc. Res., vol. 123, pp. 99–110, 2019. DOI: 10.1016/j.mvr.2019.01.003.
  • S. U. S. Choi and J. Eastman, “Enhancing thermal conductivity of fuids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, pp. 99–105, 1995.
  • S. Hussain, S. E. Ahmed, and T. Akbar, “Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle,” Int. J. Heat Mass Transf., vol. 114, pp. 1054–1066, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.135.
  • H. Xu and Q. Sun, “Generalized hybrid nanofluid model with the application of fully developed mixed convection flow in a vertical microchannel,” Commun. Theor. Phys., vol. 71, no. 8, pp. 903–911, 2019. DOI: 10.1088/0253-6102/71/8/903.
  • O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate,” Int. Commun. Heat Mass Transf., vol. 32, no. 10, pp. 1411–1419, 2005. DOI: 10.1016/j.icheatmasstransfer.2005.07.005.
  • T. G. Motsumi and O. D. Makinde, “Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate,” Phys. Scr., vol. 86, no. 4, pp. 045003, 2012. DOI: 10.1088/0031-8949/86/04/045003.
  • S. O. Salawu and H. A. Ogunseye, “Entropy generation of a radiative hydromagnetic Powell-Eyring chemical reaction nanofluid with variable conductivity and electric field loading,” Results Eng., vol. 5, pp. 100072, 2020. DOI: 10.1016/j.rineng.2019.100072.
  • J. A. Falade, S. O. Adesanya, J. C. Ukaegbu, and M. O. Osinowo, “Entropy generation analysis for variable viscous couple stress fluid flow through a channel with non-uniform wall temperature,” Alexandria Eng. J., vol. 55, no. 1, pp. 69–75, 2016. DOI: 10.1016/j.aej.2016.01.011.
  • M. Amiri and D. Mikielewicz, “Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator,” Numer. Heat Transf. A: Appl., vol. 83, no. 10, pp. 1146–1173, 2023. DOI: 10.1080/10407782.2022.2150342.
  • M. Bahiraei, N. Mazaheri, M. R. Daneshyar, and A. Mwesigye, “Two-phase simulation of irreversibilities for Ag–water nanofluid flow inside an elliptical pin-fin heat sink: entropy generation and exergy considerations,” Powder Technol., vol. 409, pp. 117723, 2022. DOI: 10.1016/j.powtec.2022.117723.
  • M. Bahiraei, “A numerical study of heat transfer characteristics of CuO-water nanofluid by Euler-Lagrange approach,” J. Therm. Anal. Calorim., vol. 123, no. 2, pp. 1591–1599, 2016. DOI: 10.1007/s10973-015-5031-0.
  • M. Ramzan, S. Rehman, M. S. Junaid, A. Saeed, P. Kumam, and W. Watthayu, “Dynamics of Williamson Ferro-nanofluid due to bioconvection in the portfolio of magnetic dipole and activation energy over a stretching sheet,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106245, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106245.
  • M. Farooq, A. Anjum, S. Rehman, and M. Y. Malik, “Entropy analysis in thermally stratified Powell-Eyring magnesium-blood nanofluid convection past a stretching surface,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106375, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106375.
  • N. Fatima et al., “Three-dimensional analysis of motile-microorganism and heat transportation of viscoelastic nanofluid with nth order chemical reaction subject to variable thermal conductivity,” Case Stud. Therm. Eng., vol. 45, pp. 102896, 2023. DOI: 10.1016/j.csite.2023.102896.
  • M. Amani et al., “Latest developments in nanofluid flow and heat transfer between parallel surfaces: a critical review,” Adv. Colloid Interface Sci., vol. 294, pp. 102450, 2021. DOI: 10.1016/j.cis.2021.102450.
  • Z. Shah and A. Ullah, “Ferrofluid treatment with insertion of electric field inside a porous cavity considering forced convection,” Waves Random Complex Media, vol. 33, pp. 1–19, 2023. DOI: 10.1080/17455030.2023.2169386.
  • T. Hayat, H. Ullah, B. Ahmad, and M. S. Alhodaly, “Heat transfer analysis in convective flow of Jeffrey nanofluid by vertical stretchable cylinder,” Int. Commun. Heat Mass Transf., vol. 120, pp. 104965, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104965.
  • A. Salmi, H. A. Madkhali, M. Nawaz, S. O. Alharbi, and A. S. Alqahtani, “Numerical study on non-Fourier heat and mass transfer in partially ionized MHD Williamson hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105967, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105967.
  • H. Waqas, U. Farooq, D. Liu, M. Abid, M. Imran and T. Muhammad, “Heat transfer analysis of hybrid nanofluid flow with thermal radiation through a stretching sheet: a comparative study,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106303, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106303.
  • A. Ali, S. Saleem, S. Mumraiz, A. Saleem, M. Awais and D. N. Khan Marwat, “Investigation on TiO2−Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 1985–1996, 2021. DOI: 10.1007/s10973-020-09648-1.
  • F. Mabood, E. O. Fatunmbi, L. Benos and I. E. Sarris, “Entropy generation in the magnetohydrodynamic Jeffrey nanofluid flow over a stretching sheet with wide range of engineering application parameters,” Int. J. Appl. Comput. Math., vol. 8, no. 3, pp. 1–18, 2022. DOI: 10.1007/s40819-022-01301-9.
  • C. Yang, X. Wu, Y. Zheng and T. Qiu, “Heat transfer performance assessment of hybrid nanofluids in a parallel channel under identical pumping power,” Chem. Eng. Sci., vol. 168, pp. 67–77, 2017. DOI: 10.1016/j.ces.2017.04.045.
  • A. Mishra and H. Upreti, “A comparative study of Ag–MgO /waterandFe3O4−CoFe2O4/EG-water hybrid nanofluid flow over a curved surface with chemical reaction using Buongiorno model,” Partial Differ. Equ. Appl. Math., vol. 5, pp. 100322, 2022. DOI: 10.1016/j.padiff.2022.100322.
  • S. Lijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • S. A. M. Mehryan, M. Izadi, Z. Namazian, and A. J. Chamkha, “Natural convection of multi-walled carbon nanotube-Fe3O4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1541–1555, 2019. DOI: 10.1007/s10973-019-08164-1.
  • T. Hayat, S. Nawaz, A. Alsaedi, and M. Rafiq, “Impact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous medium,” J. Mol. Liq., vol. 221, pp. 434–442, 2016. DOI: 10.1016/j.molliq.2016.05.072.
  • M. R. Eid, A. F. Al-Hossainy, and M. S. Zoromba, “FEM for blood-based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation,” Commun. Theor. Phys., vol. 71, no. 12, pp. 1425–1434, 2019. DOI: 10.1088/0253-6102/71/12/1425.
  • Y. X. Li, M. H. Alshbool, Y. P. Lv, I. Khan, M. Riaz Khan, and A. Issakhov, “Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface,” Case Stud. Therm. Eng., vol. 26, pp. 100975, 2021. DOI: 10.1016/j.csite.2021.100975.
  • S. Nasir, W. Alghamdi, T. Gul, I. Ali, S. Sirisubtawee, and A. Aamir, “Comparative analysis of the hydrothermal features of TiO2 water and ethylene glycol-based nanofluid transportation over a radially stretchable disk,” Numer. Heat Transf. B: Fundam., vol. 83, pp. 276-291, 2023. DOI: 10.1080/10407790.2023.2173343.
  • H. El Mghari, H. Louahlia-Gualous, and E. Lepinasse, “Numerical study of nanofluids condensation heat transfer in a square microchannel,” Numer. Heat Transf. A: Appl., vol. 69, no. 9, pp. 957–976, 2016. DOI: 10.1080/10407782.2015.1109339.
  • M. Gamal, M. S. Radwan, I. G. Elgizawy, and M. H. Shedid, “Heat transfer performance and exergy analyses of MgO and ZnO nanofluids using water/ethylene glycol mixture as base fluid,” Numer. Heat Transf. A: Appl., vol. 80, no. 12, pp. 597–616, 2021. DOI: 10.1080/10407782.2021.1962631.
  • T. Q. Tang, M. Rooman, Z. Shah, M. Asif Jan, N. Vrinceanu, and M. Racheriu, “Computational study and characteristics of magnetized gold-blood Oldroyd-B nanofluid flow and heat transfer in stenosis narrow arteries,” J. Magn. Magn. Mater., vol. 569, pp. 170448, 2023. DOI: 10.1016/j.jmmm.2023.170448.
  • I. Khan, M. A. Z. Raja, M. A. R. Khan, M. Shoaib, S. Islam, and Z. Shah, “Design of Backpropagated Intelligent Networks for Nonlinear Second-Order Lane–Emden Pantograph Delay Differential Systems,” Arab. J. Sci. Eng., vol. 47, no. 2, pp. 1197–1210, 2022. DOI: 10.1007/s13369-021-05814-1.
  • S. Nasir, A. S. Berrouk, A. Aamir, and Z. Shah, “Entropy optimization and heat flux analysis of Maxwell nanofluid configurated by an exponentially stretching surface with velocity slip,” Sci. Rep., vol. 13, no. 1, pp. 1–17, 2023. DOI: 10.1038/s41598-023-29137-3.
  • N. Mazaheri and M. Bahiraei, “Energy, exergy, and hydrodynamic performance of a spiral heat exchanger: process intensification by a nanofluid containing different particle shapes,” Chem. Eng. Process. Process Intensif., vol. 166, pp. 108481, 2021. DOI: 10.1016/j.cep.2021.108481.
  • M. Ramzan, M. Javed, S. Rehman, D. Ahmed, A. Saeed, and P. Kumam, “Computational assessment of microrotation and buoyancy effects on the stagnation point flow of Carreau-Yasuda hybrid nanofluid with chemical reaction past a convectively heated riga plate,” ACS Omega, vol. 7, no. 34, pp. 30297–30312, 2022. DOI: 10.1021/acsomega.2c03570.
  • F. Wang et al., “Comparative study of heat and mass transfer of generalized MHD Oldroyd-B bio-nano fluid in a permeable medium with ramped conditions,” Sci. Rep., vol. 11, no. 1, pp. 23454, 2021. DOI: 10.1038/s41598-021-02326-8.
  • A. Asghar et al., “Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition,” Heliyon, vol. 9, no. 2, pp. e13189, 2023. DOI: 10.1016/j.heliyon.2023.e13189.
  • Y. Wang et al., “Thermal outcomes for blood-based carbon nanotubes (SWCNT and MWCNTs) with Newtonian heating by using new Prabhakar fractional derivative simulations,” Case Stud. Therm. Eng., vol. 32, pp. 101904, 2022. DOI: 10.1016/j.csite.2022.101904.
  • S. Nadeem, S. Qadeer, S. Akhtar, A. M. El Shafey, and A. Issakhov, “Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct,” Sci. Prog., vol. 104, no. 4, pp. 114, 2021. DOI: 10.1177/00368504211050292.
  • R. Hossain, A. K. Azad, M. Jahid Hasan, and M. M. Rahman, “Thermophysical properties of Kerosene oil-based CNT nanofluid on unsteady mixed convection with MHD and radiative heat flux,” Eng. Sci. Technol. an Int. J., vol. 35, pp. 101095, 2022. DOI: 10.1016/j.jestch.2022.101095.
  • H. Upreti, A. K. Pandey, M. Kumar, and O. D. Makinde, “Ohmic heating and non-uniform heat source/sink roles on 3D Darcy–Forchheimer flow of CNTs nanofluids over a stretching surface,” Arab. J. Sci. Eng., vol. 45, no. 9, pp. 7705–7717, 2020. DOI: 10.1007/s13369-020-04826-7.
  • K. Muhammad, T. Hayat, A. Alsaedi, and B. Ahmad, “Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs + water) and hybrid nanofluid (CNTs + CuO + water),” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1157–1174, 2021. DOI: 10.1007/s10973-020-09391-7.
  • M. I. Asjad, M. Aleem, A. Ahmadian, S. Salahshour, and M. Ferrara, “New trends of fractional modeling and heat and mass transfer investigation of (SWCNTs and MWCNTs)-CMC based nanofluids flow over inclined plate with generalized boundary conditions,” Chin. J. Phys., vol. 66, pp. 497–516, 2020. DOI: 10.1016/j.cjph.2020.05.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.