Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 15
136
Views
6
CrossRef citations to date
0
Altmetric
Articles

Activation energy and convective heat transfer effects on the radiative Williamson nanofluid flow over a radially stretching surface containing Joule heating and viscous dissipation

ORCID Icon, & ORCID Icon
Pages 2534-2557 | Received 01 Mar 2023, Accepted 13 Jun 2023, Published online: 02 Jul 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div., vol. 231, pp. 99–105, 1995.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • H. U. Kang, S. H. Kim, and J. M. Oh, “Estimation of thermal conductivity of nanofluid using experimental effective particle volume,” Exp. Heat Transf., vol. 19, no. 3, pp. 181–191, Sept. 2006. DOI: 10.1080/08916150600619281.
  • W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, no. 5, pp. 432–460, May 2008. DOI: 10.1080/01457630701850851.
  • O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1326–1332, Jul. 2011. DOI: 10.1016/j.ijthermalsci.2011.02.019.
  • N. S. Akbar, S. Nadeem, C. Lee, Z. H. Khan, and R. U. Haq, “Numerical study of Williamson nano fluid flow in an asymmetric channel,” Res. Phys., vol. 3, pp. 161–166, 2013. DOI: 10.1016/j.rinp.2013.08.005.
  • M. Mahmoodi and S. Kandelousi, “Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation,” J. Mol. Liq., vol. 211, pp. 15–24, Jul. 2015. DOI: 10.1016/j.molliq.2015.06.057.
  • T. Hayat, Z. Hussain, A. Alsaedi, and B. Ahmad, “Numerical study for slip flow of carbon–water nanofluids,” Comput. Methods Appl. Mech. Eng., vol. 319, pp. 366–378, Jun. 2017. DOI: 10.1016/j.cma.2017.02.021.
  • M. Irfan, M. A. Farooq, and T. Iqra, “Magnetohydrodynamic free stream and heat transfer of nanofluid flow over an exponentially radiating stretching sheet with variable fluid properties,” Front. Phys., vol. 7, pp. 1–11, Nov. 2019. DOI: 10.3389/fphy.2019.00186.
  • M. Faisal, I. Ahmad, and T. Javed, “Radiative nanofluid flow due to unsteady bi-directional stretching surface with convective and zero mass flux boundary conditions: Using Keller Box scheme,” Comput. Therm. Sci., vol. 12, no. 4, pp. 361–385, 2020. DOI: 10.1615/ComputThermalScien.2020033674.
  • N. S. Wahid, N. M. Arifin, N. S. Khashi’ie, and I. Pop, “Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation,” Mathematics, vol. 9, no. 1, pp. 30, 2020. DOI: 10.3390/math9010030.
  • Zeeshan et al., “Numerical computation of 3D Brownian motion of thin film nanofluid flow of convective heat transfer over a stretchable rotating surface,” Sci. Rep., vol. 12, no. 1, pp. 2708, Dec. 2022. DOI: 10.1038/s41598-022-06622-9.
  • J. Raza, F. Mebarek-Oudina, and B. Mahanthesh, “Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips,” MMMS., vol. 15, no. 5, pp. 871–894, Aug. 2019. DOI: 10.1108/MMMS-11-2018-0183.
  • R. Agrawal and P. Kaswan, “Effect of slip condition on MHD flow and heat transfer through a permeable nonlinearly stretching sheet in a porous medium using the homotopy analysis method,” Comput. Therm. Sci., vol. 13, no. 1, pp. 1–15, 2021. DOI: 10.1615/ComputThermalScien.2020033258.
  • R. Agrawal, S. K. Saini, and P. Kaswan, “Numerical modeling of MHD micropolar fluid flow and melting heat transfer under thermal radiation and Joule heating,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 24, no. 2, pp. 143–154, 2023. DOI: 10.1080/15502287.2022.2113183.
  • A. Ur Rehman, Z. Abbas, and J. Hasnain, “Prediction of heat and mass transfer in radiative hybrid nanofluid with chemical reaction using the least square method: A stability analysis of dual solution,” Numer. Heat Transf. A Appl., vol. 83, no. 9, pp. 958–975, May 2023. DOI: 10.1080/10407782.2022.2156410.
  • R. V. Williamson, “The flow of pseudoplastic materials,” Ind. Eng. Chem., vol. 21, no. 11, pp. 1108–1111, Nov. 1929. DOI: 10.1021/ie50239a035.
  • D. V. Lyubimov and A. V. Perminov, “Motion of a thin oblique layer of a pseudoplastic fluid,” Inzhenerno-Fizicheskii Zhurnal, vol. 75, no. 4, pp. 123–127, 2002.
  • N. S. Akbar, S. Nadeem, and C. Lee, “Influence of heat transfer and chemical reactions on williamson fluid model for blood flow through a tapered artery with a stenosis,” Asian J. Chem., vol. 24, no. 6, pp. 2433–2441, 2012.
  • S. Nadeem, S. T. Hussain, and C. Lee, “Flow of a williamson fluid over a stretching sheet,” Braz. J. Chem. Eng., vol. 30, no. 3, pp. 619–625, 2013. DOI: 10.1590/S0104-66322013000300019.
  • N. A. Khan and H. Khan, “A boundary layer flows of non-Newtonian Williamson fluid,” Nonlinear Eng., vol. 3, no. 2, May 2014. DOI: 10.1515/nleng-2014-0002.
  • Hashim, A. Hamid, and M. Khan, “Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field,” J. Mol. Liq., vol. 260, pp. 436–446, 2018. DOI: 10.1016/j.molliq.2018.03.079.
  • Hashim, M. Khan, and A. Hamid, “Convective heat transfer during the flow of Williamson nanofluid with thermal radiation and magnetic effects,” Eur. Phys. J. Plus, vol. 134, no. 2, Feb. 2019. DOI: 10.1140/epjp/i2019-12473-9.
  • A. Hamid, Hashim, and M. Khan, “Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry,” Res. Phys., vol. 9, pp. 479–485, 2018. DOI: 10.1016/j.rinp.2018.01.025.
  • A. H. Pordanjani, A. Raisi, and B. Ghasemi, “Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect,” Numer. Heat Transf. A Appl., vol. 76, no. 6, pp. 499–516, 2019. DOI: 10.1080/10407782.2019.1642053.
  • W. Ibrahim and D. Gamachu, “Nonlinear convection flow of Williamson nanofluid past a radially stretching surface,” AIP Adv., vol. 9, no. 8, pp. 085026, Aug. 2019. DOI: 10.1063/1.5113688.
  • S. R. Mishra and P. Mathur, “Williamson nanofluid flow through porous medium in the presence of melting heat transfer boundary condition: Semi-analytical approach,” MMMS., vol. 17, no. 1, pp. 19–33, Jan. 2020. DOI: 10.1108/MMMS-12-2019-0225.
  • A. Dawar et al., “A convective flow of Williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: A revised Buongiorno model,” Case Stud. Therm. Eng., vol. 24, pp. 100869, Apr. 2021. DOI: 10.1016/j.csite.2021.100869.
  • R. Viskanta and R. J. Grosh, “Boundary layer in thermal radiation absorbing and emitting media,” Int. J. Heat Mass Transf., vol. 5, no. 9, pp. 795–806, 1962. DOI: 10.1016/0017-9310(62)90180-1.
  • S. Z. Heris, M. N. Esfahany, and G. Etemad, “Numerical investigation of nanofluid laminar convective heat transfer through a circular tube,” Numer. Heat Transf. A Appl., vol. 52, no. 11, pp. 1043–1058, 2007. DOI: 10.1080/10407780701364411.
  • R. Cortell, “Fluid flow and radiative nonlinear heat transfer over a stretching sheet,” J. King Saud Univ.–Sci., vol. 26, no. 2, pp. 161–167, 2014. DOI: 10.1016/j.jksus.2013.08.004.
  • T. Hayat, M. Imtiaz, A. Alsaedi, and M. A. Kutbi, “MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation,” J. Magn. Magn. Mater., vol. 396, pp. 31–37, Aug. 2015. DOI: 10.1016/j.jmmm.2015.07.091.
  • O. D. Makinde, F. Mabood, W. A. Khan, and M. S. Tshehla, “MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat,” J. Mol. Liq., vol. 219, pp. 624–630, Jul. 2016. DOI: 10.1016/j.molliq.2016.03.078.
  • M. Khan and A. Hamid, “Influence of non-linear thermal radiation on 2D unsteady flow of a Williamson fluid with heat source/sink,” Res. Phys., vol. 7, pp. 3968–3975, 2017. DOI: 10.1016/j.rinp.2017.10.014.
  • A. Hamid, Hashim, M. Khan, and A. Hafeez, “Unsteady stagnation-point flow of Williamson fluid generated by stretching/shrinking sheet with Ohmic heating,” Int. J. Heat Mass Transf., vol. 126, pp. 933–940, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.076.
  • R. Agrawal and P. Kaswan, “Influence of thermal radiation on entropy analysis of generalized MHD unsteady viscous fluid flow on a stretching sheet with Joule heating and viscous dissipation,” Comput. Therm. Sci., vol. 13, no. 4, pp. 21–33, 2021. DOI: 10.1615/ComputThermalScien.2021036513.
  • R. Agrawal and P. Kaswan, “MHD Eyring–Powell nanofluid past over an unsteady exponentially stretching surface with entropy generation and thermal radiation,” Heat Transf., vol. 50, no. 5, pp. 4669–4693, 2021. DOI: 10.1002/htj.22095.
  • M. Bilal et al., “Williamson magneto nanofluid flow over partially slip and convective cylinder with thermal radiation and variable conductivity,” Sci. Rep., vol. 12, no. 1, pp. 12727, Dec. 2022. DOI: 10.1038/s41598-022-16268-2.
  • A. R. Bestman, “Natural convection boundary layer with suction and mass transfer in a porous medium,” Int. J. Energy Res., vol. 14, no. 4, pp. 389–396, 1990. DOI: 10.1002/er.4440140403.
  • K. A. Maleque, “A binary chemical reaction on unsteady free convective boundary layer heat and mass transfer flow with Arrhenius activation energy and heat generation/absorption,” LAAR., vol. 44, no. 1, pp. 97–104, 2014. DOI: 10.52292/j.laar.2014.425.
  • Z. Shafique, M. Mustafa, and A. Mushtaq, “Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy,” Res. Phys., vol. 6, pp. 627–633, 2016. DOI: 10.1016/j.rinp.2016.09.006.
  • A. Hamid, Hashim, and M. Khan, “Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid,” J. Mol. Liq., vol. 262, pp. 435–442, 2018. DOI: 10.1016/j.molliq.2018.04.095.
  • M. Khan, T. Salahuddin, M. M. Yousaf, F. Khan, and A. Hussain, “Variable diffusion and conductivity change in 3D rotating Williamson fluid flow along with magnetic field and activation energy,” HFF., vol. 30, no. 5, pp. 2467–2484, Apr. 2020. DOI: 10.1108/HFF-02-2019-0145.
  • Z. Abdelmalek et al., “Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis,” Alex. Eng. J., vol. 59, no. 5, pp. 3991–4011, Oct. 2020. DOI: 10.1016/j.aej.2020.07.006.
  • E. O. Titiloye, J. A. Gbadeyan, and A. T. Adeosun, “Heat and mass transfer of MHD dissipative Casson nanofluid flow over a stretching or shrinking sheet with multiple slip boundary conditions,” DDF., vol. 393, pp. 103–120, 2019. DOI: 10.4028/www.scientific.net/DDF.393.103.
  • A. M. Aly and W. Alhejaili, “Effects of thermal radiation on natural convection in two connected circular cylinders suspended by NEPCM and porous media,” Numer. Heat Transf. A Appl., vol. 82, no. 8, pp. 469–481, Oct. 2022. DOI: 10.1080/10407782.2022.2079331.
  • Y.-Q. Song et al., “Unsteady mixed convection flow of magneto-Williamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features,” Alex. Eng. J., vol. 61, no. 1, pp. 195–206, Jan. 2022. DOI: 10.1016/j.aej.2021.04.089.
  • E. O. Titiloye, A. T. Adeosun, and J. A. Gbadeyan, “Influence of chemical reaction and Arrhenius activation energy on hydromagnetic non-Darcian casson nanofluid flow with second-order slip condition,” JERA., vol. 54, pp. 100–117, 2021. DOI: 10.4028/www.scientific.net/JERA.54.100.
  • P. D. Ariel, “Axisymmetric flow due to a stretching sheet with partial slip,” Comput. Math. Appl., vol. 54, no. 7–8, pp. 1169–1183, Oct. 2007. DOI: 10.1016/j.camwa.2006.12.063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.