Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 16
112
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

A comparative analysis of MoS2-SiO2/H2O hybrid nanofluid and MoS2-SiO2-GO/H2O ternary hybrid nanofluid over an inclined cylinder with heat generation/absorption

ORCID Icon & ORCID Icon
Pages 2724-2753 | Received 16 Apr 2023, Accepted 17 Jun 2023, Published online: 26 Jun 2023

References

  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund, vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non‐Newtonian flows,” J. Heat Transfer, vol. 66, pp. 99–105, 1995.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • Q. Li and Y. Xuan, “Convective heat transfer and flow characteristics of Cu-water nanofluid,” Sci. China Series E: Technol. Sci., vol. 45, pp. 408–416, 2002. DOI: 10.1360/02ye9047.
  • M. Sheikholeslami and D. D. Ganji, “Heat transfer of Cu-water nanofluid flow between parallel plates,” Powder Technol., vol. 235, pp. 873–879, 2013. DOI: 10.1016/j.powtec.2012.11.030.
  • R. N. Kumar, et al., “Inspection of convective heat transfer and KKL correlation for simulation of nanofluid flow over a curved stretching sheet,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105445, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105445.
  • B. C. Prasannakumara and R. P. Gowda, “Heat and mass transfer analysis of radiative fluid flow under the influence of uniform horizontal magnetic field and thermophoretic particle deposition,” Waves Rand Complex Med., pp. 1–12, 2022. DOI: 10.1080/17455030.2022.2096943.
  • R. P. Gowda, R. N. Kumar, A. Rauf, B. C. Prasannakumara, and S. A. Shehzad, “Magnetized flow of sutterby nanofluid through cattaneo-christov theory of heat diffusion and stefan blowing condition,” Appl. Nanosci., vol. 13, no. 1, pp. 585–594, 2023. DOI: 10.1007/s13204-021-01863-y.
  • R. P. Gowda, et al., “Dynamics of nanoparticle diameter and interfacial layer on flow of non-Newtonian (Jeffrey) nanofluid over a convective curved stretching sheet,” Int. J. Mod. Phys. B, vol. 36, no. 31, pp. 2250224, 2022. DOI: 10.1142/S0217979222502241.
  • R. P. Gowda, A. Rauf, R. Naveen Kumar, B. C. Prasannakumara and S. A. Shehzad, “Slip flow of Casson–Maxwell nanofluid confined through stretchable disks,” Indian J. Phys., vol. 96, no. 7, pp. 2041–2049, 2022. DOI: 10.1007/s12648-021-02153-7.
  • A. Moghadassi, E. Ghomi, and F. A. Parvizian, “A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer,” Int. J. Therm. Sci., vol. 92, pp. 50–57, 2015. DOI: 10.1016/j.ijthermalsci.2015.01.025.
  • R. S. Varun Kumar, A. Alhadhrami, R. J. Punith Gowda, R. Naveen Kumar, and B. C. Prasannakumara, “Exploration of Arrhenius activation energy on hybrid nanofluid flow over a curved stretchable surface,” ZAMM‐J Appl Math Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 101, no. 12, pp. e202100035, 2021. DOI: 10.1002/zamm.202100035.
  • P. M. Patil and B. Goudar, “Time-dependent mixed convection flow of Ag–MgO/water hybrid nanofluid over a moving vertical cone with rough surface,” J. Therm. Anal. Calorim., vol. 147, no. 19, pp. 10693–10705, 2022. DOI: 10.1007/s10973-022-11246-2.
  • P. M. Patil and B. Goudar, “Time‐dependent mixed convection of Prandtl–Eyring hybrid nanofluid flow over a vertical cone: entropy analysis,” Asia-Pacific J. Chem. Eng., pp. e2913, 2023. DOI: 10.1002/apj.2913.
  • J. S. Goud, et al., “Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat,” Case Study Therm. Eng., vol. 35, pp. 102113, 2022. DOI: 10.1016/j.csite.2022.102113.
  • W. Cao, I. L. Animasaun, S. J. Yook, V. A. Oladipupo, and X. Ji, “Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106069, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106069.
  • I. L. Animasaun, S. J. Yook, T. Muhammad, and A. Mathew, “Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface,” Surface Interf., vol. 28, pp. 101654, 2022. DOI: 10.1016/j.surfin.2021.101654.
  • W. Ahmed, et al., “Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO + Al2O3+ TiO2/DW based ternary hybrid nanofluids in a square flow conduit,” Rene Sustainable Energy Rev., vol. 145, pp. 111025, 2021. DOI: 10.1016/j.rser.2021.111025.
  • P. M. Patil and B. Goudar, “Single and multiple walled CNTs-TiO2 ternary hybrid nanofluid flow of Williamson fluid in an unsteady combined convective regime: an entropy analysis,” Num. Heat Transf, Part A: Appl., pp. 1–22, 2023. DOI: 10.1080/10407782.2023.2174222.
  • M. Bilal, et al., “Numerical analysis of an unsteady, electroviscous, ternary hybrid nanofluid flow with chemical reaction and activation energy across parallel plates,” Micromach, vol. 13, no. 6, pp. 874, 2022. DOI: 10.3390/mi13060874.
  • M. Arif, P. Kumam, W. Kumam, and Z. Mostafa, “Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional model,” Case Study Therm. Eng., vol. 31, pp. 101837, 2022. DOI: 10.1016/j.csite.2022.101837.
  • A. S. Oke, “Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface,” Arabian J. Sci. Eng., vol. 47, pp. 16015–16031, 2022. DOI: 10.1007/s13369-022-06838-x.
  • S. Manjunatha, V. Puneeth, B. J. Gireesha, and A. Chamkha, “Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet,” J. Appl. Comput. Mech., vol. 8, no. 4, pp. 1279–1286, 2022. DOI: 10.22055/JACM.2021.37698.3067.
  • R. N. Kumar, F. Gamaoun, A. Abdulrahman, J. S. Chohan, and R. P. Gowda, “Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: a comparative study,” Int. J. Mod. Phys. B, vol. 36, no. 25, pp. 2250170, 2022. DOI: 10.1142/S0217979222501703.
  • D. G. Prakasha, M. V. V. N. L. Sudharani, K. G. Kumar, and A. J. Chamkha, “Comparative study of hybrid (graphene/magnesium oxide) and ternary hybrid (graphene/zirconium oxide/magnesium oxide) nanomaterials over a moving plate,” Int. Commun. Heat Mass Transf., vol. 140, pp. 106557, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106557.
  • N. Abbas, S. Nadeem, A. Saleem, M. Y. Malik, A. Issakhov, and F. M. Alharbi, “Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder,” Chinese J. Phys., vol. 69, pp. 109–117, 2021. DOI: 10.1016/j.cjph.2020.11.019.
  • H. A. Nabwey, S. I. Alshber, A. M. Rashad, and A. E. N. Mahdy, “Influence of bioconvection and chemical reaction on magneto—Carreau nanofluid flow through an inclined cylinder,” Mathematics, vol. 10, no. 3, pp. 504, 2022. DOI: 10.3390/math10030504.
  • B. Kumbhakar, S. Nandi, and A. J. Chamkha, “Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: a multiple regression analysis,” Chinese J. Phys., vol. 79, pp. 38–56, 2022. DOI: 10.1016/j.cjph.2022.07.003.
  • I. Waini, A. Ishak, and I. Pop, “Hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020. DOI: 10.1038/s41598-020-66126-2.
  • P. M. Patil, B. Goudar, and M. A. Sheremet, “Tangent hyperbolic ternary hybrid nanofluid flow over a rough-yawed cylinder due to impulsive motion,” J. Taibah Uni. Sci., vol. 17, no. 1, pp. 2199664, 2023. DOI: 10.1080/16583655.2023.2199664.
  • A. H. Pordanjani and S. Aghakhani, “Numerical investigation of natural convection and irreversibilities between two inclined concentric cylinders in presence of uniform magnetic field and radiation,” Heat Transf. Eng., vol. 43, no. 11, pp. 937–957, 2022. DOI: 10.1080/01457632.2021.1919973.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a hollow horizontal cylinder with external longitudinal fins: a numerical approach,” Numer. Heat Transf, Part A: Appl., vol. 74, no. 7, pp. 1405–1423, 2018. DOI: 10.1080/10407782.2018.1505096.
  • M. Gholinia, M. Armin, A. A. Ranjbar, and D. D. Ganji, “Numerical thermal study on CNTs/C2H6O2–H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source,” Case Stud. Therm. Eng., vol. 14, pp. 100490, 2019. DOI: 10.1016/j.csite.2019.100490.
  • T. Hayat, S. Qayyum, M. Imtiaz, and A. Alsaedi, “Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation,” Int. J. Heat Mass Transf., vol. 102, pp. 723–732, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.059.
  • S. Mousavi, M. Siavashi, and M. M. Heyhat, “Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins,” Numer. Heat Transf. Part A: Appl., vol. 75, no. 8, pp. 560–577, 2019. DOI: 10.1080/10407782.2019.1606634.
  • E. M. Elbashbeshy, H. G. Asker, and B. Nagy, “The effects of heat generation absorption on boundary layer flow of a nanofluid containing gyrotactic microorganisms over an inclined stretching cylinder,” Ain Shams. Eng. J., vol. 13, no. 5, pp. 101690, 2022. DOI: 10.1016/j.asej.2022.101690.
  • A. Mishra and M. Kumar, “Numerical analysis of MHD nanofluid flow over a wedge, including effects of viscous dissipation and heat generation/absorption, using Buongiorno model,” Heat Transf., vol. 50, no. 8, pp. 8453–8474, 2021. DOI: 10.1002/htj.22284.
  • R. Naveen Kumar, S. Suresha, R. P. Gowda, S. B. Megalamani, and B. C. Prasannakumara, “Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model,” Pramana – J. Phys., vol. 95, no. 4, pp. 180, 2021. DOI: 10.1007/s12043-021-02212-y.
  • Q. H. Shi, et al., “Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy,” Sci. Rep., vol. 11, no. 1, pp. 16030, 2021. DOI: 10.1038/s41598-021-95587-2.
  • K. Sarada, et al., “Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model,” Case Stud Therml. Eng., vol. 38, pp. 102332, 2022. DOI: 10.1016/j.csite.2022.102332.
  • A. Mishra and M. Kumar, “Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating,” SN Appl. Sci., vol. 2, no. 8, pp. 1350, 2020. DOI: 10.1007/s42452-020-3156-7.
  • J. C. Umavathi, et al., “Magnetohydrodynamic squeezing Casson nanofluid flow between parallel convectively heated disks,” Int. J. Mod. Phys. B., vol. 37, no. 4, pp. 2350031, 2023. DOI: 10.1142/S0217979223500315.
  • A. M. Alqahtani, M. R. Khan, N. Akkurt, V. Puneeth, A. Alhowaity, and H. Hamam, “Thermal analysis of a radiative nanofluid over a stretching/shrinking cylinder with viscous dissipation,” Chem. Phys. Lett., vol. 808, pp. 140133, 2022. DOI: 10.1016/j.cplett.2022.140133.
  • H. Ur Rasheed, A. Al-Zubaidi, S. Islam, S. Saleem, Z. Khan, and W. Khan, “Effects of Joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of Jeffrey nanofluid over a vertically stretching cylinder,” Coatings, vol. 11, no. 3, pp. 353, 2021. DOI: 10.3390/coatings11030353.
  • I. Ullah, T. A. Alkanhal, S. Shafie, K. S. Nisar, I. Khan, and O. D. Makinde, “MHD slip flow of Casson fluid along a nonlinear permeable stretching cylinder saturated in a porous medium with chemical reaction, viscous dissipation, and heat generation/absorption,” Symmetry, vol. 11, no. 4, pp. 531, 2019. DOI: 10.3390/sym11040531.
  • S. Sadighi, M. Jabbari, H. Afshar, and H. A. D. Ashtiani, “MHD heat and mass transfer nanofluid flow on a porous cylinder with chemical reaction and viscous dissipation effects: benchmark solutions,” Case Stud. Thermal Eng., vol. 40, pp. 102443, 2022. DOI: 10.1016/j.csite.2022.102443.
  • R. J. Punith Gowda, R. Naveen Kumar, and B. C. Prasannakumara, “Two-phase Darcy-Forchheimer flow of dusty hybrid nanofluid with viscous dissipation over a cylinder,” Int. J. Appl. Comput. Math., vol. 7, no. 3, pp. 95, 2021. DOI: 10.1007/s40819-021-01033-2.
  • P. Li, et al., “Hall effects and viscous dissipation applications in peristaltic transport of Jeffrey nanofluid due to wave frame,” Coll. Interface Sci. Commun., vol. 47, pp. 100593, 2022. DOI: 10.1016/j.colcom.2022.100593.
  • M. Azam, T. Xu, M. K. Nayak, W. A. Khan, and M. Khan, “Gyrotactic microorganisms and viscous dissipation features on radiative Casson nanoliquid over a moving cylinder with activation energy,” Waves Rand Comp. Med., pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2112632.
  • F. Wang, S. P. Rani, K. Sarada, R. J. Punith Gowda, H. Y. Zahran, E. E. Mahmoud, Umair khan, “The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone,” Case Studies Therm Eng., vol. 33, pp. 101930, 2022. DOI: 10.1016/j.csite.2022.101930.
  • A. Ishak and R. Nazar, “Laminar boundary layer flow along a stretching cylinder,” Eur. J. Sci. Res., vol. 36, no. 1, pp. 22–29, 2009.
  • A. S. Butt, A. Ali, and A. Mehmood, “Numerical investigation of magnetic field effects on entropy generation in viscous flow over a stretching cylinder embedded in a porous medium,” Energy, vol. 99, pp. 237–249, 2016. DOI: 10.1016/j.energy.2016.01.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.