46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Risk assessment and numerical analysis of short-term accident scenarios in a nuclear fuel storage vault

ORCID Icon, ORCID Icon, & ORCID Icon
Received 17 Aug 2022, Accepted 22 Jun 2023, Published online: 06 Jul 2023

References

  • Atomic Energy Regulatory Board, “Design of concrete structures important to safety of nuclear facilities,” Atomic Energy Regulatory Board, Mumbai, India, Rep. AERB/SS/CSE-1, 2001.
  • S. R. Chen, W. C. Lin, Y. M. Ferng, C. C. Chieng and B. S. Pei, “CFD simulating the transient thermal–hydraulic characteristics in a 17 × 17 bundle for a spent fuel pool under the loss of external cooling system accident,” Ann. Nucl. Energy, vol. 73, pp. 241–249, Nov. 2014. DOI: 10.1016/j.anucene.2014.06.054.
  • S. H. Yoo, H. C. No, H. M. Kim and E. H. Lee, “Full-scope simulation of a dry storage cask using computational fluid dynamics,” Nucl. Eng. Des., vol. 240, no. 12, pp. 4111–4122, Dec. 2010. DOI: 10.1016/j.nucengdes.2010.08.009.
  • M. Wang, Y. Wang, W. Tian, S. Qiu and G. H. Su, “Recent progress of CFD applications in PWR thermal hydraulics study and future directions,” Ann. Nucl. Energy, vol. 150, pp. 107836, Jan. 2021. DOI: 10.1016/j.anucene.2020.107836.
  • T.-C. Hung, V. K. Dhir, B.-S. Pei, Y.-S. Chen and F. P. Tsai, “The development of a three-dimensional transient CFD model for predicting cooling ability of spent fuel pools,” Ann. Nucl. Energy, vol. 166, pp. 108751, Feb. 2022. DOI: 10.1016/j.anucene.2021.108751.
  • F. Nimander, “Investigation of spent nuclear fuel pool coolability,” master’s thesis, Division of Nuclear Reactor Technology, Royal Institute of Technology, Stockholm, Sweden, 2011.
  • T.-C. Hung, V. K. Dhir, B.-S. Pei, Y.-S. Chen and F. P. Tsai, “The development of a three-dimensional transient CFD model for predicting cooling ability of spent fuel pools,” Appl. Therm. Eng., vol. 50, no. 1, pp. 496–504, Jan. 2013. DOI: 10.1016/j.applthermaleng.2012.06.042.
  • R. Poškas, V. Šimonis, P. Poškas and A. Sirvydas, “Thermal analysis of CASTOR RBMK-1500 casks during long-term storage of spent nuclear fuel,” Ann. Nucl. Energy, vol. 99, pp. 40–46, Jan. 2017. DOI: 10.1016/j.anucene.2016.09.031.
  • L. E. Herranz, J. Penalva and F. Feria, “CFD analysis of a cask for spent fuel dry storage: model fundamentals and sensitivity studies,” Ann. Nucl. Energy, vol. 76, pp. 54–62, May 2015. DOI: 10.1016/j.anucene.2014.09.032.
  • A. Arkoma, R. Huhtanen, J. Leppänen, J. Peltola and T. Pättikangas, “Calculation chain for the analysis of spent nuclear fuel in long-term interim dry storage,” Ann. Nucl. Energy, vol. 119, pp. 129–138, Sep. 2018. DOI: 10.1016/j.anucene.2018.04.037.
  • A. W. Abboud, “Coupled chemical–CFD modeling of unsealed dry storage of advanced test reactor spent fuel,” Ann. Nucl. Energy, vol. 183, pp. 109646, Apr. 2023. DOI: 10.1016/j.anucene.2022.109646.
  • D. W. Pepper and Y. Chen, “Heat transfer analysis of nuclear waste casks stored in the Yucca Mountain repository,” Numer. Heat Transf. A: Appl., vol. 47, no. 7, pp. 671–690, Sep. 2005. DOI: 10.1080/10407780590911657.
  • A. Wahid, T. Sundari and R. Ratiko, “Dynamic modeling and controlling of a spent nuclear fuel storage pool under periodic operation and station blackout conditions,” Prog. Nucl. Energy, vol. 108, pp. 152–159, Sep. 2018. DOI: 10.1016/j.pnucene.2018.04.016.
  • M. Wataru, H. Takeda, K. Shirai and T. Saegusa, “Heat removal verification tests of full-scale concrete casks under accident conditions,” Nucl. Eng. Des., vol. 238, no. 5, pp. 1206–1212, May 2008. DOI: 10.1016/j.nucengdes.2007.03.035.
  • K. Nagano, “An assessment of spent nuclear fuel storage demands under uncertainty,” Nucl. Eng. Des., vol. 238, no. 5, pp. 1175–1180, May 2008. DOI: 10.1016/j.nucengdes.2007.03.030.
  • V. K. Mishra, S. K. Panda, B. Sen, M. P. Maiya and B. P. C. Rao, “Numerical analysis of forced convection heat transfer in a nuclear fuel storage vault,” Int. J. Therm. Sci., vol. 173, pp. 107429, Mar.2022. DOI: 10.1016/j.ijthermalsci.2021.107429.
  • G. Pandikumar, V. Gopalkrishnan and P. Mohankrishnan, “Inventories, activities and decay heats of PFBR using ORIGEN-2”, Indira Gandhi Centre for Atomic Research, Kalpakkam, India, Rep. RPD/NDS/111, 2004.
  • ANSYS Inc. ANSYS Fluent User Manual, Release, 15.0, Canonsburg, PA: ANSYS Inc., 2013.
  • P. Mayeli and G. J. Sheard, “Buoyancy-driven flows beyond the Boussinesq approximation: a brief review,” Int. Commun. Heat Mass Transfer, vol. 125, pp. 105316, Jun.2021. DOI: 10.1016/j.icheatmasstransfer.2021.105316.
  • M. Krishnani and D. N. Basu, “On the validity of Boussinesq approximation in transient simulation of single-phase natural circulation loops,” Int. J. Therm. Sci., vol. 105, pp. 224–232, Jul.2016. DOI: 10.1016/j.ijthermalsci.2016.03.004.
  • J. K. Lai, E. Merzari and Y. A. Hassan, “Sensitivity analyses in a buoyancy-driven closed system with high resolution CFD using Boussinesq approximation and variable density models,” Int. J. Heat Fluid Flow, vol. 75, pp. 1–13, Feb. 2019. DOI: 10.1016/j.ijheatfluidflow.2018.11.002.
  • V. K. Mishra, S. K. Panda, B. Sen, M. P. Maiya and D. Samantaray, “Performance of cooling system of a fast reactor sub-assembly storage facility during station blackout,” Prog. Nucl. Energy, vol. 158, pp. 104592, Apr. 2023. DOI: 10.1016/j.pnucene.2023.104592.
  • J. J. Costa, L. A. Oliveira and D. Blay, “Turbulent airflow in a room with a two-jet heating ventilation system – a numerical parametric study,” Energy Build., vol. 32, no. 3, pp. 327–343, Sep.1999. DOI: 10.1016/S0378-7788(00)00056-6.
  • A. C. Syuryavin, S. Park, M. M. Nirwono and S. H. Lee, “Indoor radon and thoron from building materials: analysis of humidity, air exchange rate, and dose assessment,” Nucl. Eng. Technol., vol. 52, no. 10, pp. 2370–2378, Oct. 2020. DOI: 10.1016/j.net.2020.03.013.
  • H. M. Kim, H. C. No, K. S. Bang, K. S. Seo and S. H. Lee, “Development of scaling laws of heat removal and CFD assessment in concrete cask air path,” Nucl. Eng. Des., vol. 278, pp. 7–16, Oct. 2014. DOI: 10.1016/j.nucengdes.2014.06.015.
  • Y. Wang, et al., “CFD simulation of flow and heat transfer characteristics in a 5 × 5 fuel rod bundles with spacer grids of advanced PWR,” Nucl. Eng. Technol. vol. 52, no. 7, pp. 1386–1395, Jul. 2020. DOI: 10.1016/j.net.2019.12.012.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. London, UK: Taylor & Francis, 1980.
  • Indira Gandhi Center for Atomic Research, Design Basis Report for Air Conditioning and Ventilation System. Kalpakkam, India: Indira Gandhi Center for Atomic Research, 2018.
  • M. Wang and Q. Chen, “Assessment of various turbulence models for transitional flows in an enclosed environment (RP-1271),” HVAC&R Res., vol. 15, no. 6, pp. 1099–1119, May 2009. DOI: 10.1080/10789669.2009.10390881.
  • V. K. Mishra, S. K. Panda, B. Sen, M. P. Maiya and B. P. C. Rao, “Performance of different duct-nozzle arrangement on heat removal from a nuclear fuel storage vault under regular operating conditions,” Nucl. Eng. Des., vol. 395, pp. 111871, Aug. 2022. DOI: 10.1016/j.nucengdes.2022.111871.
  • F. Ampofo and T. G. Karayiannis, “Experimental benchmark data for turbulent natural convection in an air filled square cavity,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3551–3572, Sep. 2003. DOI: 10.1016/S0017-9310(03)00147-9.
  • A. S. Gawas and D. V. Patil, “Axisymmetric thermal-lattice Boltzmann method for Rayleigh-Bénard convection with anisotropic thermal diffusion,” J. Comput. Sci., vol. 45, pp. 101185, Sep. 2020. DOI: 10.1016/j.jocs.2020.101185.
  • F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, vol. 4. New York, NY: John Wiley & Sons, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.