Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
63
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigation on the influence of the film hole diameters on the cooling performance of the film and vortex composite cooling under rotating conditions

, , , , &
Pages 2982-3012 | Received 11 Oct 2022, Accepted 05 Apr 2023, Published online: 20 Jul 2023

References

  • J. C. Han, S. Dutta, and S. Ekkad, Gas Turbine Heat Transfer and Cooling Technology. Boca Raton, FL: CRC Press, 2012, pp. 1.
  • F. Kreith and D. Margolis, “Heat transfer and friction in turbulent vortex flow,” Appl. Sci. Res., vol. 8, no. 1, pp. 457–473, 1959. DOI: 10.1007/BF00411769.
  • J.-J. Hwang and C.-S. Cheng, “Augmented heat transfer in a triangular duct by using multiple swirling jets,” J. Heat Transf., vol. 121, no, 3, pp. 683–690, 1999. DOI: 10.1115/1.2826033.
  • V. K. Dhir, “Heat transfer enhancement using tangential injection,” U.S. Patent 5,291,943, 3–8 1994.
  • C. R. Hedlund et al., “Heat transfer in a swirl chamber at different temperature ratios and Reynolds numbers,” Int. J. Heat Mass Transf., vol. 42, no. 22, pp. 4081–4091, 1999. DOI: 10.1016/S0017-9310(99)00086-1.
  • J. P. C. W. Ling, P. T. Ireland, and N. W. Harvey, “Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection,” presented at the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Amer. Soc. Mech. Eng., Barcelona, Spain, 2006, pp. 325–340. DOI: 10.1115/GT2006-90352.
  • Z. Liu, Z. Feng, and L. Song, “Numerical study on flow and heat transfer characteristics of swirl cooling on leading edge model of gas turbine blade,” presented at the Turbo Expo: Power for Land, Sea, and Air, San Antonio, Texas, USA, vol. 54655, 2011, pp. 1495–1504. DOI: 10.1115/GT2011-46125.
  • Z. Liu, J. Li, and Z. Feng, “Numerical study on the effect of jet slot height on flow and heat transfer of swirl cooling in leading edge model for gas turbine blade,” presented at the Turbo Expo: Power for Land, Sea, and Air, Amer. soc. Mech. Eng., San Antonio, Texas, USA, vol. 55140, 2013, pp. V03AT12A029. DOI: 10.1115/GT2013-94819.
  • Z. Liu et al., “Numerical study on the effect of jet nozzle aspect ratio and jet angle on swirl cooling in a model of a turbine blade leading edge cooling passage,” Int. J. Heat Mass Transf., vol. 90, pp. 986–1000, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.050.
  • Z. Liu et al., “Numerical study on the effect of jet spacing on the Swirl flow and heat transfer in the turbine airfoil leading edge region,” Numer. Heat Transf., Part A: Appl., vol. 70, no. 9, pp. 980–994, 2016. DOI: 10.1080/10407782.2016.1230381.
  • C. Du et al., “Numerical study on effects of jet nozzle angle and number on vortex cooling behaviour for gas turbine blade leading edge,” presented at the Turbo Expo: Power for Land, Sea, and Air,” Amer. Soc. Mech. Engineers, Seoul, South Korea, vol. 49798, 2016, pp. V05BT11A014.
  • C. Du, L. Li, and X. Fan, “Numerical study on vortex cooling flow and heat transfer behaviour under rotating conditions,” Int. J. Heat Mass Transf., vol. 105, pp. 638–647, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.028.
  • C. Du, L. Li, X. Fan, and Z. Feng, “Rotational influences on aerodynamic and heat transfer behaviour of gas turbine blade vortex cooling with bleed holes,” Appl. Therm. Eng., vol. 121, pp. 302–313, 2017. DOI: 10.1016/j.applthermaleng.2017.04.026.
  • X. Fan, C. Du, L. Li, and S. Li, “Numerical simulation on effects of film hole geometry and mass flow on vortex cooling behaviour for gas turbine blade leading edge,” Appl. Therm. Eng., vol. 112, pp. 472–483, 2017. DOI: 10.1016/j.applthermaleng.2016.10.059.
  • F. Wu, L. Li, J. Wang, X. Fan, and C. Du, “Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge,” Int. J. Heat Mass Transf., vol. 144, pp. 118625, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118625.
  • L. Li et al., “Numerical study on flow and heat transfer behaviour of vortex and film composite cooling,” J. Mech. Sci. Technol., vol. 32, no. 6, pp. 2905–2917, 2018. DOI: 10.1007/s12206-018-0547-4.
  • M. Zhang, N. Wang, and J. C. Han, “Internal heat transfer of film-cooled leading edge model with normal and tangential impinging jets,” Int. J. Heat Mass Transf., vol. 139, pp. 193–204, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.140.
  • J. Wang, L. Li, J. Li, F. Wu, and C. Du, “Numerical investigation on flow and heat transfer characteristics of vortex cooling in an actual film-cooled leading edge,” Appl. Therm. Eng., vol. 185, pp. 115942, 2021. DOI: 10.1016/j.applthermaleng.2020.115942.
  • L. P. Timko, “Energy efficient engine high pressure turbine component test performance report,” NASA-CR-168289, 1984. https://ntrs.nasa.gov/citations/19900019237
  • Y. Jiang et al., “Numerical investigation of swirl cooling heat transfer enhancement on blade leading edge by adding water mist, presented at the Turbo Expo: Power for Land, Sea, and Air, Düsseldorf, Germany, Amer. Soc. Mech. Eng., vol. 45714, 2014. DOI: 10.1115/GT2014-25697.
  • X. Fan, “Numerical research of a new vortex double wall cooling configuration for gas turbine blade leading edge,” Int. J. Heat Mass Transf., vol. 183, pp. 122048, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122048.
  • Z. Wang et al., “Numerical study on unsteady film cooling performance of turbine rotor considering influences of inlet non-uniformities and upstream coolant,” Aerosp. Sci. Technol., vol. 119, pp. 107089, 2021. DOI: 10.1016/j.ast.2021.107089.
  • J. Wang et al., “Effects of hole configuration on film cooling effectiveness and particle deposition on curved surfaces in gas turbines,” Appl. Therm. Eng., vol. 190, pp. 116861, 2021. DOI: 10.1016/j.applthermaleng.2021.116861.
  • L. Ye et al., “Influences of groove configuration and density ratio on grooved leading-edge showerhead film cooling using the pressure sensitive paint measurement technique,” Int. J. Heat Mass Transf., vol. 190, pp. 122641, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122641.
  • L. Ye, C. Liu, B. Li, and A. Zhu, “Detailed showerhead cooling effectiveness measurements on the notched leading-edge surface: Effect of freestream turbulence and density ratio,”Available at SSRN: https://ssrn.com/abstract=4051311 or DOI: 10.2139/ssrn.4051311.
  • I. B. Celik et al., “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” ASME J. Fluids Eng., vol. 130, no. 7, pp. 078001, 2008.
  • Z. T. Stratton and T. I. Shih, “Effects of density and blowing ratios on the turbulent structure and effectiveness of film cooling,” J. Turbomachin., vol. 140, no. 10, pp. 12, 2018. DOI: 10.1115/1.4041218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.