Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
91
Views
1
CrossRef citations to date
0
Altmetric
Articles

A generalized electro-osmotic MHD flow of hybrid ferrofluid through Fourier and Fick’s law in inclined microchannel

ORCID Icon, , ORCID Icon &
Pages 3091-3109 | Received 27 Mar 2023, Accepted 28 Jun 2023, Published online: 10 Jul 2023

References

  • S. K. Das, N. Putra, P. Thiesen and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer., vol. 125, no. 4, pp. 567–574, 2003. DOI: 10.1115/1.1571080.
  • S. U. Choi and J. A. Eastman, 1995. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States
  • V. Karthik, S. Sahoo, S. K. Pabi and S. Ghosh, “On the phononic and electronic contribution to the enhanced thermal conductivity of water-based silver nanofluids,” Int. J. Thermal Sci., vol. 64, pp. 53–61, 2013. DOI: 10.1016/j.ijthermalsci.2012.09.003.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. DOI: 10.1063/1.1341218.
  • F. Hussain, M. Nazeer, M. Altanji, A. Saleem and M. M. Ghafar, “Thermal analysis of Casson rheological fluid with gold nanoparticles under the impact of gravitational and magnetic forces,” Case Stud. Thermal Engng., vol. 28, pp. 101433, 2021. DOI: 10.1016/j.csite.2021.101433.
  • M. W. Nazir, M. Nazeer, T. Javed, N. Ali, K. Al-Basyouni and M. I. Khan, “Hydrothermal features of the magnetite nanoparticles on natural convection flow through a square conduit by using the finite element method,” Int. J. Mod. Phys. B, vol. 37, no. 07 2023. DOI: 10.1142/S0217979223500698.
  • M. Nazeer, M. Irfan, F. Hussain and I. Siddique, “Entropy generation analysis in blood-gold casson nanofluid through horizontal wavy channel with velocity and thermal slips: applications in skin diseases,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 259–272, 2023. DOI: 10.1142/S2737416523400021.
  • M. W. Nazir, T. Javed, N. Ali and M. Nazeer, “Effects of radiative heat flux and heat generation on magnetohydodynamics natural convection flow of nanofluid inside a porous triangular cavity with thermal boundary conditions,” Num. Method. Partial., 2021. DOI: 10.1002/num.22768.
  • A. Khan, D. Khan, I. Khan, F. Ali, F. U. Karim and M. Imran, “MHD flow of sodium alginate-based Casson type nanofluid passing through a porous medium with Newtonian heating,” Sci. Rep., vol. 8, no. 1, pp. 1–12, 2018. DOI: 10.1038/s41598-018-26994-1.
  • D. Khan, P. Kumam, I. Khan, A. Khan, W. Watthayu and M. Arif, “Scientific investigation of a fractional model based on hybrid nanofluids with heat generation and porous medium: applications in the drilling process,” Sci. Rep., vol. 12, no. 1, pp. 1–13, 2022. DOI: 10.1038/s41598-022-10398-3.
  • S. F. Ahmmed, R. Biswas and M. Afikuzzaman, “Unsteady magnetohydrodynamic free convection flow of nanofluid through an exponentially accelerated inclined plate embedded in a porous medium with variable thermal conductivity in the presence of radiation,” J. Nanofluid., vol. 7, no. 5, pp. 891–901, 2018. DOI: 10.1166/jon.2018.1520.
  • R. Biswas and S. F. Ahmmed, “Effects of hall current and chemical reaction on magnetohydrodynamics unsteady heat and mass transfer of Casson nanofluid flow through a vertical plate,” J. Heat Transfer, vol. 140, no. 9 2018. DOI: 10.1115/1.4039909.
  • N. Ali Shah, N. Ahmed, T. Elnaqeeb and M. M. Rashidi, “Magnetohydrodynamic free convection flows with thermal memory over a moving vertical plate in porous medium”, J. Appl. Comput. Mech., vol. 5, no. 1, pp. 150-161, 2019.
  • R. Biswas, M. Mondal and A. Islam, “A steady MHD natural convection and heat transfer fluid flow through a vertical surface in the existence of hall current and radiation,” ISI, vol. 18, no. 2, pp. 331–356, 2018. DOI: 10.3166/i2m.17.331-356.
  • K. Y. Leong, K. K. Ahmad, H. C. Ong, M. J. Ghazali and A. Baharum, “Synthesis and thermal conductivity characteristic of hybrid nanofluids–a review,” Renewable Sustain. Energ. Review., vol. 75, no. 1, pp. 868–878, 2017. DOI: 10.1016/j.rser.2016.11.068.
  • R. Biswas, M. S. Hossain, R. Islam, S. F. Ahmmed, S. R. Mishra and M. Afikuzzaman, “Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation,” J. Comput. Math. Data Sci., vol. 4, pp. 100048, 2022. DOI: 10.1016/j.jcmds.2022.100048.
  • R. Biswas, M. Hasan, B. J. Rana and S. F. Ahmmed, “MHD free convection Maxwell nanofluid flow through an exponentially accelerated vertical surface in the presence of radiation,” In AIP Conf. Proceeding., vol. 2121, no. 1, pp. 030007, 2019.
  • S. F. Ahmmed and R. Biswas, “Effects of radiation and chemical reaction on MHD unsteady heat and mass transfer of nanofluid flow through a vertical plate,” MMC_B, vol. 87, no. 4, pp. 213–220, 2018. DOI: 10.18280/mmc_b.870401.
  • M. A. Gazi, U. K. Suma, M. Katun, M. T. Rahaman, R. Biswas and S. F. Ahmmed, “A numerical evolution of MHD Maxwell fluid flow through an isothermal radiated stretching sheet with higher order chemical reaction,” Asian J. Pure APPl. Math., pp. 329–353, 2022.
  • M. Katun, M. T. Rahaman, M. R. Hossain, U. K. Suma and R. Biswas, “A numerical review: computational approach of heat and mass transfer Casson nanofluid flow through a vertical isothermal cylinder,” Asian J. Res. Biosci., pp. 98–108, 2022.
  • D. Khan, P. Kumam, I. Khan, K. Sitthithakerngkiet, A. Khan and G. Ali, “Unsteady rotating MHD flow of a second‐grade hybrid nanofluid in a porous medium: Laplace and Sumudu transforms,” Heat Trans, vol. 51, no. 8, pp. 8065–8083, 2022. DOI: 10.1002/htj.22681.
  • M. Saqib, I. Khan and S. Shafie, “Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms,” Adv. Differ. Equ., vol. 2019, no. 1, pp. 1–18, 2019. DOI: 10.1186/s13662-019-1988-5.
  • R. Gorenflo and F. Mainardi, Fractional calculus. In Fractals and fractional calculus in continuum mechanics, pp. 223–276, 1997.
  • T. F. Nonnenmacher and R. Metzler, “On the Riemann-Liouville fractional calculus and some recent applications,” Fractals, vol. 03, no. 03, pp. 557–566, 1995. DOI: 10.1142/S0218348X95000497.
  • M. Caputo, “Linear models of dissipation whose Q is almost frequency independent—II,” Geophy. J. Intern., vol. 13, no. 5, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • Z. Khan, S. Ul Haq, F. Ali and M. Andualem, “Free convection flow of second grade dusty fluid between two parallel plates using Fick’s and Fourier’s laws: a fractional model,” Sci. Rep., vol. 12, no. 1, pp. 1–22, 2022. DOI: 10.1038/s41598-022-06153-3.
  • S. Irshad, F. Ali and I. Khan, “A time-fractional model of free convection electro-osmotic flow of Casson fluid through a microchannel using generalized Fourier and Fick’s law,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2067374.
  • D. Khan, S. Ullah, P. Kumam, W. Watthayu, Z. Ullah and A. M. Galal, “A generalized dusty Brinkman type fluid of MHD free convection two phase flow between parallel plates,” Physics Letters A, vol. 450, pp. 128368, 2022. DOI: 10.1016/j.physleta.2022.128368.
  • N. A. Sheikh, D. L. C. Ching, H. B. Sakidin and I. Khan, “Analysis of the flow of Brinkman-type nanofluid using generalized Fourier’s and Fick’s laws,” Fractals, vol. 30, no. 01, pp. 2240044, 2022. DOI: 10.1142/S0218348X22400448.
  • H. C. Brinkman, “On the permeability of media consisting of closely packed porous particles,” Appl. Sci. Res., vol. 1, no. 1, pp. 81–86, 1949. DOI: 10.1007/BF02120318.
  • Farhad, Ali, Ilyas, Khan, Sharidan, Shafie, Samiulhaq,. “A note on new exact solutions for some unsteady flows of Brinkman-type fluids over a plane wall” Zeitschrift für Naturforschung A, vol. 67, no, 6-7), pp. 377–380, 2012. DOI: 10.5560/zna.2012-0039.
  • F. Ali, I. Khan, S. Ul Haq and S. Shafie, “Influence of thermal radiation on unsteady free convection MHD flow of Brinkman type fluid in a porous medium with Newtonian heating,” Math. Prob. Engng., vol. 2013, pp. 1–13, 2013. DOI: 10.1155/2013/632394.
  • Z. A. Khan, S. U. Haq, T. S. Khan, I. Khan and I. Tlili, “Unsteady MHD flow of a Brinkman type fluid between two side walls perpendicular to an infinite plate,” Results Physics, vol. 9, pp. 1602–1608, 2018. DOI: 10.1016/j.rinp.2018.04.034.
  • M. Nazeer, “Multiphase flow development in gravitational and magnetic fields,” Waves Random Complex Media, pp. 1–15, 2023. DOI: 10.1080/17455030.2023.2193853.
  • M. Nazeer, M. Z. Alqarni, F. Hussain and S. Saleem, “Computational analysis of multiphase flow of non-Newtonian fluid through inclined channel: heat transfer analysis with perturbation method,” Comp. Part. Mech., pp. 1–11, 2023. DOI: 10.1007/s40571-023-00569-y.
  • N. A. Sheikh, D. L. C. Ching, I. Khan and H. B. Sakidin, “Enhancement in heat transfer due to hybrid nanoparticles in MHD flow of Brinkman-type fluids using Caputo fractional derivatives,” Sci. Rep., vol. 12, no. 1, pp. 1–14, 2022. DOI: 10.1038/s41598-022-18110-1.
  • B. Teng, W. Luo, Z. Chen, B. Kang, L. Chen and T. Wang, “A comprehensive study of the effect of Brinkman flow on the performance of hydraulically fractured wells,” J. Petrol. Sci. Engng., vol. 213, pp. 110355, 2022. DOI: 10.1016/j.petrol.2022.110355.
  • T. Siva, B. Kumbhakar, S. Jangili and P. K. Mondal, “Unsteady electro-osmotic flow of couple stress fluid in a rotating microchannel: an analytical solution,” Phys. Fluid., vol. 32, no. 10, pp. 102013, 2020. DOI: 10.1063/5.0023747.
  • M. Narahari and R. Pendyala, “Exact solution of the unsteady natural convective radiating gas flow in a vertical channel,” In AIP Conf. Proceed., vol. 1557, no. 1, pp. 121–124, 2013.
  • R. Vemuri, et al., “Effect on structural and magnetic properties of Mg2+ substituted cobalt nano ferrite,” Result. Phys., vol. 12, pp. 947–952, 2019. DOI: 10.1016/j.rinp.2018.12.032.
  • Z. Iqbal, et al., “Energy transport analysis in natural convective flow of water: ethylene glycol (50: 50)-based nanofluid around a spinning down-pointing vertical cone,” Front. Mater, vol. 9, pp. 1037201, 2022. DOI: 10.3389/fmats.2022.1037201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.