91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation of entropy and heat and mass transfer in Water-EG based hybrid nanoliquid flow with MHD and nonlinear radiation

ORCID Icon, , ORCID Icon & ORCID Icon
Received 15 Mar 2023, Accepted 29 Jun 2023, Published online: 19 Jul 2023

References

  • S. U. Choi and J. A. Eastman, "Enhancing Thermal Conductivity of Fluids with Nanoparticles". , (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne, IL, USA: Argonne National Lab.(ANL), 1995.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. DOI: 10.1016/S0142-727X(99)00067-3.
  • J. Koo and C. Kleinstreuer, “Laminar nanofluid flow in microheat-sinks,” Int. J. Heat Mass Transfer, vol. 48, no. 13, pp. 2652–2661, jun 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.01.029.
  • M. Shahi, A. H. Mahmoudi and F. Talebi, “Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid,” Int. Commun. Heat Mass Transfer, vol. 37, no. 2, pp. 201–213, feb 2010. DOI: 10.1016/j.icheatmasstransfer.2009.10.002.
  • M. K. Nayak, S. Shaw, V. S. Pandey and A. J. Chamkha, “Combined effects of slip and convective boundary condition on MHD 3d stretched flow of nanofluid through porous media inspired by non-linear thermal radiation,” Indian J Phys, vol. 92, no. 8, pp. 1017–1028, feb 2018. DOI: 10.1007/s12648-018-1188-2.
  • P. Mishra, M. R. Acharya and S. Panda, “Mixed convection MHD nanofluid flow over a wedge with temperature-dependent heat source,” Pramana - J Phys, vol. 95, no. 2, pp. 1-12, mar 2021. DOI: 10.1007/s12043-021-02087-z.
  • R. Mahato, M. Das, S. S. S. Sen and S. Shaw, “Entropy generation on unsteady stagnation-point casson nanofluid flow past a stretching sheet in a porous medium under the influence of an inclined magnetic field with homogeneous and heterogeneous reactions,” Heat Trans, vol. 51, no. 6, pp. 5723–5747, may 2022. DOI: 10.1002/htj.22567.
  • W. A. Khan, A. S. Alshomrani, A. K. Alzahrani, M. Khan and M. Irfan, “Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional eyring–powell magneto-nanofluid flow,” Pramana - J Phys, vol. 91, no. 5, pp. 1-9, sep 2018. DOI: 10.1007/s12043-018-1634-x.
  • S. M. Hussain and W. Jamshed, “A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method,” Int. Commun. Heat Mass Transfer, vol. 129, pp. 105671, dec 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105671.
  • W. Jamshed, K. S. Nisar, R. J. P. Gowda, R. N. Kumar and B. C. Prasannakumara, “Radiative heat transfer of second grade nanofluid flow past a porous flat surface: a single-phase mathematical model,” Phys. Scr, vol. 96, no. 6, pp. 064006, apr 2021. DOI: 10.1088/1402-4896/abf57d.
  • M. G. P. Kumar, B. G. Rao, B. Sreenivasulu and S. S. Arasavelli, “Effect of vibration on heat transfer to laminar non-newtonian nanofluid flowing through a circular pipe: a numerical analysis,” Numerical Heat Transfer, Part A: applications, vol. 82, no. 11, pp. 683–699, 2022. DOI: 10.1080/10407782.2022.2083862.
  • B. Takabi and H. Shokouhmand, “Effects of al2o3–cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime,” Int. J. Mod. Phys. C, vol. 26, no. 04, pp. 1550047, feb 2015. DOI: 10.1142/S0129183115500473.
  • S. S. S. Sen, M. Das, R. Mahato and S. Shaw, “Entropy analysis on nonlinear radiative MHD flow of diamond-co3o4/ethylene glycol hybrid nanofluid with catalytic effects,” Int. Commun. Heat Mass Transfer, vol. 129, pp. 105704, dec 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105704.
  • M. G. Reddy, N. Kumar R, B. C. Prasannakumara, N. G. Rudraswamy and K. G. Kumar, “Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering arrhenius energy,” Commun. Theor. Phys, vol. 73, no. 4, pp. 045002, feb 2021. DOI: 10.1088/1572-9494/abdaa5.
  • S. K. Sahu, S. Shaw, D. N. Thatoi and M. K. Nayak, “A thermal management of darcy-forchheimer SWCNT–MWCNT cross hybrid nanofluid flow due to vertical stretched cylinder with and without inertia effects,” Waves Random Complex Media, pp. 1–27, jun 2022. DOI: 10.1080/17455030.2022.2088889.
  • S. S. K. Raju, M. J. Babu and C. S. K. Raju, “Irreversibility analysis in hybrid nanofluid flow between two rotating disks with activation energy and cross-diffusion effects,” Chinese J. Physics, vol. 72, pp. 499–529, aug 2021. DOI: 10.1016/j.cjph.2021.03.016.
  • N. Acharya and K. Das, “Three-dimensional rotating flow of Cu-Al2O3/kerosene oil hybrid nanofluid in presence of activation energy and thermal radiation,” Numerical Heat Transfer, Part A: applications, pp. 1–18, 2022. DOI: 10.1080/10407782.2022.2147111.
  • A. Raptis, C. Perdikis and H. S. Takhar, “Effect of thermal radiation on MHD flow,” APPl. Mathematics Computation, vol. 153, no. 3, pp. 645–649, jun 2004. DOI: 10.1016/S0096-3003(03)00657-X.
  • T. Hayat, S. A. Shehzad and A. Alsaedi, “Soret and dufour effects on magnetohydrodynamic (MHD) flow of casson fluid,” Appl. Math. Mech.-Engl. Ed, vol. 33, no. 10, pp. 1301–1312, aug 2012. DOI: 10.1007/s10483-012-1623-6.
  • M. Das, G. Mahanta, S. Shaw and S. B. Parida, “Unsteady MHD chemically reactive double-diffusive casson fluid past a flat plate in porous medium with heat and mass transfer,” Heat Trans. Asian Res, vol. 48, no. 5, pp. 1761–1777, mar 2019. DOI: 10.1002/htj.21456.
  • M. Shoaib, M. A. Z. Raja, M. A. R. Khan, I. Farhat and S. E. Awan, “Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation,” Surfaces Interfaces, vol. 25, pp. 101243, aug 2021. DOI: 10.1016/j.surfin.2021.101243.
  • I. Chabani, F. Mebarek-Oudina and A. A. I. Ismail, “MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle,” Micromachines, vol. 13, no. 2, pp. 224, jan 2022. DOI: 10.3390/mi13020224.
  • S. Nandi, B. Kumbhakar and G. S. Seth, “Quadratic regression analysis of unsteady MHD free convective and radiative–dissipative stagnation flow of hybrid nanofluid over an exponentially stretching surface under porous medium,” Chinese J. Physics, vol. 77, pp. 2090–2105, jun 2022. DOI: 10.1016/j.cjph.2021.12.011.
  • N. Abbas, W. Shatanawi and A. M. Taqi, “Thermodynamic study of radiative chemically reactive flow of induced mhd sutterby nanofluid over a nonlinear stretching cylinder,” Alexandria Engineering Journal, vol. 70, pp. 179–189, 2023. DOI: 10.1016/j.aej.2023.02.038.
  • S. Nadeem, M. N. Khan and N. Abbas, “Transportation of slip effects on nanomaterial micropolar fluid flow over exponentially stretching,” Alexandria Engineering Journal, vol. 59, no. 5, pp. 3443–3450, 2020. DOI: 10.1016/j.aej.2020.05.024.
  • M. Amjad, I. Zehra, S. Nadeem, N. Abbas, A. Saleem and A. Issakhov, “Influence of lorentz force and induced magnetic field effects on casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region,” Surfaces Interfaces, vol. 21, pp. 100766, 2020. DOI: 10.1016/j.surfin.2020.100766.
  • U. Manzoor, T. Muhammad, U. Farooq and H. Waqas, “Investigation of thermal stratification and nonlinear thermal radiation in darcy-forchheimer transport of hybrid nanofluid by rotating disk with marangoni convection,” Int. J. Ambient Energy, vol. 43, no. 1pages, pp. 6724–6731, mar 2022. DOI: 10.1080/01430750.2021.2023040.
  • M. Usman, M. Hamid, T. Zubair, R. Ul Haq and W. Wang, “Cu-Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM,” Int. J. Heat Mass Transfer, vol. 126, pp. 1347–1356, nov 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.005.
  • SHAMI A M, Alsallami, Sami Ullah, Khan, Abuzar, Ghaffari, M Ijaz, Khan, M A, El-Shorbagy, M Riaz, Khan, Usman,. Numerical simulations for optimised flow of second-grade nanofluid due to rotating disk with nonlinear thermal radiation: chebyshev spectral collocation method analysis.Pramana - J Phys, vol. 96, no. 2, pp. 98, may 2022. DOI: 10.1007/s12043-022-02337-8.
  • S. S. S. Sen, M. Das and S. Shaw, “Thermal dispersed homogeneous-heterogeneous reaction within MHD flow of a jeffrey fluid in the presence of newtonian cooling and nonlinear thermal radiation,” Heat Transfer, vol. 50, no. 6, pp. 5744–5759, apr 2021. DOI: 10.1002/htj.22146.
  • R. P. Sharma, O. Prakash, I. Rashidi, S. R. Mishra, P. S. Rao and F. Karimi, “Nonlinear thermal radiation and heat source effects on unsteady electrical MHD motion of nanofluid past a stretching surface with binary chemical reaction,” Eur. Phys. J. Plus, vol. 137, no. 3, pp. 297, mar 2022. DOI: 10.1140/epjp/s13360-022-02359-6.
  • W. Shatanawi, N. Abbas, T. A. Shatnawi and F. Hasan, “Heat and mass transfer of generalized fourier and fick’s law for second-grade fluid flow at slendering vertical riga sheet,” Heliyon, vol. 9, no. 3, pp. e14250, 2023. DOI: 10.1016/j.heliyon.2023.e14250.
  • O. Mahian, et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transfer, vol. 65, pp. 514–532, oct 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • R. Ellahi, M. Hassan and A. Zeeshan, “Shape effects of nanosize particles in cu-h20 nanofluid on entropy generation,” Int. J. Heat Mass Transfer, vol. 81, pp. 449–456, feb 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.041.
  • T. Hayat, S. A. Khan, M. I. Khan and A. Alsaedi, “Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid,” Phys. Scr, vol. 94, no. 8, pp. 085001, apr 2019. DOI: 10.1088/1402-4896/ab0f65.
  • K. K. Al-Chlaihawi, H. H. Alaydamee, A. E. Faisal, K. Al-Farhany and M. A. Alomari, “Newtonian and non-newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: a review,” Heat Trans, vol. 51, no. 2, pp. 1725–1745, oct 2022. DOI: 10.1002/htj.22372.
  • R. Khosravi, S. Rabiei, M. Khaki, M. R. Safaei and M. Goodarzi, “Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks,” J Therm Anal Calorim, vol. 145, no. 4, pp. 1949–1967, may 2021. DOI: 10.1007/s10973-021-10828-w.
  • S. E. Ghasemi, M. Hatami, A. Salarian and G. Domairry, “Thermal and fluid analysis on effects of nanofluid outside of a stretching cylinder with magnetic field using differential quadrature method,” jtam, vol. 54, no. 2, pp. 517–528, apr 2016. DOI: 10.15632/jtam-pl.54.2.517.
  • I. Waini, U. Khan, A. Zaib, A. Ishak and I. Pop, “Thermophoresis particle deposition of Co Fe2O4 and Ti O2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effects,” Int. J. Numerical Methods Heat & Fluid Flow, vol. 32, no. 10, pp. 3259-3282, feb 2022.
  • A. Hamid, et al., “Impact of hall current and homogenous–heterogenous reactions on MHD flow of GO−MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface,” Waves Random Complex Media, pp. 1–18, oct 2021. DOI: 10.1080/17455030.2021.1985746.
  • M. Saqib, F. Ali, I. Khan, N. A. Sheikh and A. Khan, “Entropy generation in different types of fractionalized nanofluids,” Arab J Sci Eng, vol. 44, no. 1, pp. 531–540, jun2019. DOI: 10.1007/s13369-018-3342-8.
  • P. B. A. Reddy, “Biomedical aspects of entropy generation on electromagnetohydrodynamic blood flow of hybrid nanofluid with nonlinear thermal radiation and non-uniform heat source/sink,” Eur. Phys. J. Plus, vol. 135, no. 10, pp. 1-30, oct 2020. DOI: 10.1140/epjp/s13360-020-00825-7.
  • H. Ullah, T. Hayat, S. Ahmad, M. Sh. Alhodaly and S. Momani, “Numerical simulation of MHD hybrid nanofluid flow by a stretchable surface,” Chinese J. Physics, vol. 71, pp. 597–609, jun 2021. DOI: 10.1016/j.cjph.2021.03.017.
  • G. K. Ramesh, S. Manjunatha, G. S. Roopa and A. J. Chamkha, “Hybrid (ND-co3o4/EG) nanoliquid through a permeable cylinder under homogeneous-heterogeneous reactions and slip effects,” J Therm Anal Calorim, vol. 146, no. 3, pp. 1347–1357, aug2021. DOI: 10.1007/s10973-020-10106-1.
  • A. Ishak, R. Nazar and I. Pop, “Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder,” Energy Conversion Management, vol. 49, no. 11, pp. 3265–3269, nov 2008. DOI: 10.1016/j.enconman.2007.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.