106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer analysis of turbulent forced-convection flow in a wavy absorber tube containing a molten salt-based hybrid nanofluid filled with a porous material

ORCID Icon & ORCID Icon
Received 16 Dec 2022, Accepted 03 Jul 2023, Published online: 12 Jul 2023

References

  • M. Atashafrooz, H. Sajjadi and A. A. Delouei, “Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis,” Int. Commun. Heat Mass Transf., vol. 110, pp. 104411, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104411.
  • M. Atashafrooz, M. Sheikholeslami, H. Sajjadi and A. A. Delouei, “Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction,” J. Magn. Magn., vol. 478, pp. 216–226, 2019. DOI: 10.1016/j.jmmm.2019.01.111.
  • B. Boudraa and R. Bessaїh, “Turbulent forced convection and entropy generation of impinging jets of water-al2o3 nanofluid on heated blocks,” J. Appl. Comput., vol. 7, no. 4, pp. 2010–2023, 2021. DOI: 10.22055/JACM.2020.35216.2599.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” (n.d.) 8.
  • M. Atashafrooz, H. Sajjadi, A. Amiri Delouei, T. F. Yang and W. M. Yan, “Three-dimensional analysis of entropy generation for forced convection over an inclined step with presence of solid nanoparticles and magnetic force,” Num. Heat. Transf. Part A, Fundam., vol. 80, no. 6, pp. 318–335, 2021. DOI: 10.1080/10407782.2021.1944579.
  • M. Atashafrooz, “The effects of buoyancy force on mixed convection heat transfer of MHD nanofluid flow and entropy generation in an inclined duct with separation considering Brownian motion effects,” J. Therm. Anal. Calorim., vol. 138, no. 5, pp. 3109–3126, 2019. DOI: 10.1007/s10973-019-08363-w.
  • B. Boudraa and R. Bessaih, “Heat transfer and entropy generation of water/TiO2 nanofluid flow in a wavy channel using two-phase mixture approach,” Thermophys. Aeromech., vol. 29, no. 4, pp. 587–604, 2022. DOI: 10.1134/S0869864322040114.
  • A. Mezaache, K. Louhichi and R. Bessaïh, “Numerical investigation of mixed convection and entropy production of nanofluid flow in a corrugated channel using a two‐phase mixture model,” Heat Transf., vol. 52, no. 1, pp. 734–758, 2023. DOI: 10.1002/htj.22714.
  • O. Ouabouch, I. A. Laasri, M. Kriraa and M. Lamsaadi, “Effects of flow regime and geometric parameters on the performance of a parabolic trough solar collector using nanofluid,” Num Heat Transf. Part A, Fundam., vol. 82, no. 7, pp. 376–388, 2022. DOI: 10.1080/10407782.2022.2078632.
  • S. E. Ghasemi, S. Mohsenian and A. A. Ranjbar, “Numerical analysis on heat transfer of parabolic solar collector operating with nanofluid using Eulerian two-phase approach,” Num Heat Transf. Part A, Fundam., vol. 80, no. 9, pp. 475–484, 2021. DOI: 10.1080/10407782.2021.1950412.
  • M. M. Rahman, S. Saha, S. Mojumder, A. G. Naim, R. Saidur and T. A. Ibrahim, “Effect of sine-squared thermal boundary condition on augmentation of heat transfer in a triangular solar collector filled with different nanofluids,” Num. Heat Transf. Part B, Fundam., vol. 68, no. 1, pp. 53–74, 2015. DOI: 10.1080/10407790.2014.992058.
  • A. Kasaeian, R. Daneshazarian, F. Pourfayaz, S. Babaei, M. Sheikhpour and S. Nakhjavani, “Evaluation of MWCNT/ethylene glycol nanofluid flow in a parabolic trough collector with glass-glass absorber tube,” HFF, vol. 30, no. 1, pp. 176–205, 2019. DOI: 10.1108/HFF-11-2018-0693.
  • A. Shariatifard, E. Hasani Malekshah and N. Akbar, “Thermal performance of parabolic-trough solar collector using double-population LBM with single-node/curved scheme and experimental evaluation on properties of SiO2-TiO2/EG nanofluid,” HFF, vol. 32, no. 2, pp. 785–805, 2022. DOI: 10.1108/HFF-02-2021-0130.
  • Z. Ebrahimpour, M. Sheikholeslami, S. A. Farshad and A. Shafee, “Radiation heat transfer within a solar system considering nanofluid flow inside the absorber tube,” HFF, vol. 32, no. 2, pp. 469–487, 2022. DOI: 10.1108/HFF-07-2020-0453.
  • A. Yurddaş, “Optimization and thermal performance of evacuated tube solar collector with various nanofluids,” Int. J. Heat Mass Transf., vol. 152, pp. 119496, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119496.
  • J. Kumar and N. Sandeep, “Numerical simulation of Sutterby hybrid nanoliquid flow between two concentric cylinders with thermal radiation,” Num. Heat Transf. Part B, Fundam., vol. 84, no. 1, pp. 50–65, 2023. DOI: 10.1080/10407790.2023.2186549.
  • P. G. Struchalin, et al., “Performance of a tubular direct absorption solar collector with a carbon-based nanofluid,” Int. Commun. Heat Mass Transf., vol. 179, pp. 121717, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121717.
  • J. Alsarraf, A. Shahsavar, R. B. Mahani and P. Talebizadehsardari, “Turbulent forced convection and entropy production of a nanofluid in a solar collector considering various shapes for nanoparticles,” Int. Commun. Heat Mass Transf., vol. 117, pp. 104804, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104804.
  • Y. Li, et al., “Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt,” Sol. Energy, vol. 183, pp. 776–781, 2019. DOI: 10.1016/j.solener.2019.03.036.
  • H. Chen, X. Chen, Y. Wu, Y. Lu, X. Wang and C. Ma, “Experimental study on forced convection heat transfer of KNO3–Ca (NO3)2 + SiO2 molten salt nanofluid in circular tube,” Sol. Energy, vol. 206, pp. 900–906, 2020. DOI: 10.1016/j.solener.2020.06.061.
  • N. Udayashankar, et al., “Effect of silica nanoparticle size on the stability and thermophysical properties of molten salts based nanofluids for thermal energy storage applications at concentrated solar power plants,” J. Energy Storage, vol. 51, pp. 104276, 2022. DOI: 10.1016/j.est.2022.104276.
  • C. Liu, Y. Qingsheng, W. Gaosheng and D. Xiaoze, “Mechanisms for thermal conduction in molten salt-based nanofluid,” Int. J. Heat Mass Transf., vol. 188, pp. 122648, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122648.
  • S. W. Wang, C. Zhou, C. X. Cai, H. H. Zhu, N. X. Wang and Y. Zou, “Experimental research on convective heat transfer characteristics of molten salt in a pebble bed channel with internal heat source,” Nucl. Eng. Des., vol. 387, pp. 111619, 2022. DOI: 10.1016/j.nucengdes.2021.111619.
  • E. Bellos, C. Tzivanidis and D. Tsimpoukis, “Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids,” Energy Convers. Manag., vol. 156, pp. 388–402, 2018. DOI: 10.1016/j.enconman.2017.11.051.
  • Z. Hongyun, W. Kongxiang, Y. Wei, W. Lingling and X. Huaqing, “Ternary molten salt energy storage coupled with graphene oxide-TiN nanofluids for direct absorption solar collector,” Energy Build., vol. 253, pp. 111481, 2021. DOI: 10.1016/j.enbuild.2021.111481.
  • X. Chen, Y. Wu, L. Zhang, X. Wang and C. Ma, “Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting,” Sol. Energy Mater Sol. Cells, vol. 191, pp. 209–217, 2019. DOI: 10.1016/j.solmat.2018.11.003.
  • B. El Far, S. M. M. Rizvi, Y. Nayfeh and D. Shin, “Study of viscosity and heat capacity characteristics of molten salt nanofluids for thermal energy storage,” Sol. Energy Mater. Sol. Cells, vol. 210, pp. 110503, 2020. DOI: 10.1016/j.solmat.2020.110503.
  • A. Kaood, M. Abubakr, O. Al-Oran and M. A. Hassan, “Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators,” Renew. Energ., vol. 177, pp. 1045–1062, 2021. DOI: 10.1016/j.renene.2021.06.049.
  • Z. Cancan, H. Songtao, W. Yuting, Z. Chunyu and G. Hang, “Investigation on convection heat transfer performance of quaternary mixed molten salt based nanofluids in smooth tube,” Int. J. Therm. Sci., vol. 177, pp. 107534, 2022. DOI: 10.1016/j.ijthermalsci.2022.107534.
  • G. Qiao, M. Lasfargues, A. Alexiadis and Y. Ding, “Simulation and experimental study of the specific heat capacity of molten salt based nanofluids,” Appl. Therm. Eng., vol. 111, pp. 1517–1522, 2017. DOI: 10.1016/j.applthermaleng.2016.07.159.
  • N. Udayashankar, G. F. Luis, G. Y. Yaroslav, Z. Abdelali, M. I. Josu and F. Abdessamad, “Shape effect of Al2O3 nanoparticles on the thermophysical properties and viscosity of molten salt nanofluids for TES application at CSP plants,” Appl. Therm. Eng., vol. 169, pp. 114942, 2020. DOI: 10.1016/j.applthermaleng.2020.114942.
  • Z. Ying, B. He, L. Su, Y. Kuang, D. He and C. Lin, “Convective heat transfer of molten salt-based nanofluid in a receiver tube with non-uniform heat flux,” Appl. Therm. Eng., vol. 181, pp. 115922, 2020. DOI: 10.1016/j.applthermaleng.2020.115922.
  • Y. Ueki, N. Fujita, M. Kawai and M. Shibahara, “Molten salt thermal conductivity enhancement by mixing nanoparticles,” Fusion Eng. Des., vol. 136, pp. 1295–1299, 2018. DOI: 10.1016/j.fusengdes.2018.04.121.
  • Q. Xie, Q. Zhu and Y. Li, “Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets,” Nanoscale Res. Lett., vol. 11, no. 1, pp. 306, 2016. DOI: 10.1186/s11671-016-1519-1.
  • M. Chieruzzi, G. F. Cerritelli, A. Miliozzi and J. M. Kenny, “Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 448, 2013. DOI: 10.1186/1556-276X-8-448.
  • L. Ming-Chang and H. Chien-Hsun, “Specific heat capacity of molten salt-based alumina nanofluid,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 292, 2013. DOI: 10.1186/1556-276X-8-292.
  • N. Abed, I. Afgan, A. Cioncolini, H. Iacovides, A. Nasser and T. Mekhail, “Thermal performance evaluation of various nanofluids with non-uniform heating for parabolic trough collectors,” Case Stud. Therm. Eng., vol. 22, pp. 100769, 2020. DOI: 10.1016/j.csite.2020.100769.
  • E. Bellos, C. Tzivanidis and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustain. Energy Technol. Assess., vol. 39, pp. 100714, 2020. DOI: 10.1016/j.seta.2020.100714.
  • Y. Hu, Z. Zhang, H. Gao and Y. He, “Forced convective heat transfer of solar salt-based Al2O3 nanofluids using lattice Boltzmann method,” Therm. Sci. Eng. Prog., vol. 8, pp. 2–9, 2018. DOI: 10.1016/j.tsep.2018.07.013.
  • A. Kasaiean, M. Sameti, R. Daneshazarian, Z. Noori, A. Adamian and T. Ming, “Heat transfer network for parabolic trough collector as a heat collecting element by using of nanofluid,” Renew. Energ., vol. 123, pp. 439–449, 2018. DOI: 10.1016/j.renene.2018.02.062.
  • M. A. Rehan, et al., “Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions,” Renew. Energ., vol. 118, pp. 742–751, 2018. DOI: 10.1016/j.egyr.2022.03.030.
  • E. Bellos, C. Tzivanidis and D. Tsimpoukis, “Enhancing the performance of parabolic trough collectors using nanofluids and turbulators,” Renew. Sustain. Energy Rev., vol. 91, pp. 358–375, 2018. DOI: 10.1016/j.rser.2018.03.091.
  • H. A. Mohammed, H. B. Vuthaluru and S. Liu, “Heat transfer augmentation of parabolic trough solar collector receiver’s tube using hybrid nanofluids and conical turbulators,” J. Taiwan. Inst. Chem. Eng., vol. 125, pp. 215–242, 2021. DOI: 10.1016/j.jtice.2021.06.032.
  • H. A. Mohammed, B. V. Hari and L. Shaomin, “Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters,” Renew. Energy, vol. 182, pp. 401–426, 2022. DOI: 10.1016/j.renene.2021.09.096.
  • M. X. Ho and C. Pan, “Experimental investigation of heat transfer performance of molten HITEC salt flow with alumina nanoparticles,” Int. J. Heat Mass Transf., vol. 107, pp. 1094–1103, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.015.
  • E. Bellos, Z. Said and C. Tzivanidis, “The use of nanofluids in solar concentrating technologies: a comprehensive review,” J. Clean. Prod., vol. 196, pp. 84–99, 2018. DOI: 10.1016/j.jclepro.2018.06.048.
  • T. R. Shah and H. M. Ali, “Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review,” Sol. Energy, vol. 183, pp. 173–203, 2019. DOI: 10.1016/j.solener.2019.03.012.
  • H. A. Aljaerani, M. Samykano, R. Saidur, A. K. Pandey and K. Kadirgama, “Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: a critical review,” J. Energy Storage, vol. 44, pp. 103280, 2021. DOI: 10.1016/j.est.2021.103280.
  • A. C. P. Elvia, F. Francesco, L. Grégory and Y. L. Karl, “A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors,” Appl. Therm. Eng., vol. 211, pp. 118346, 2022. DOI: 10.1016/j.applthermaleng.2022.118346.
  • Z. A. Nawsud, A. Altouni, H. S. Akhijahani and H. Kargarsharifabad, “A comprehensive review on the use of nano-fluids and nano-PCM in parabolic trough solar collectors (PTC),” Sustain. Energy Technol. Assess., vol. 51, pp. 101889, 2022. DOI: 10.1016/j.seta.2021.101889.
  • ANSYS fluent theory guide, ANSYS, Inc., 2600 ANSYS Drive Canonsburg, PA 15317, January 2014.
  • Y. Krishna, M. Faizal, R. Saidur, K. C. Ng and N. Aslfattahi, “State-of-the-art heat transfer fluids for parabolic trough collector,” Int. J. Heat Mass Transf., vol. 152, pp. 119541, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119541.
  • M. Atashafrooz, “Influence of radiative heat transfer on the thermal characteristics of nanofluid flow over an inclined step in the presence of an axial magnetic field,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3345–3360, 2020. DOI: 10.1007/s10973-019-08672-0.
  • Z. Shaojie, L. Lin, W. Tao and D. Chuanshuai, “Turbulent heat transfer and flow analysis of hybrid Al2O3-CuO/water nanofluid: an experiment and CFD simulation study,” Appl. Therm. Eng., vol. 188, pp. 116589, 2021. DOI: 10.1016/j.applthermaleng.2021.116589.
  • C. Cárdenas, M. Edwin, G. A. Oliveira, F. Bandarra and P. Enio, “Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems,” Int. J. Heat Mass Transf., vol. 132, pp. 375–387, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.014.
  • B. Boudraa and R. Bessaïh, “Three-dimensional analysis of heat transfer and entropy production of jet impingement hybrid nanofluid cooling a porous mediafilled heat sink,” Energy Sources A: Recovery Util. Environ. Eff., vol. 44, no. 3, pp. 6035–6062, 2022. DOI: 10.1080/15567036.2022.2095460.
  • E. V. Timofeeva, J. L. Routbort and D. Singh, “Particle shape effects on thermophysical properties of alumina nanofluids,” J. Appl. Phys., vol. 106, no. 1, pp. 014304, 2009. DOI: 10.1063/1.3155999.
  • B. Boudraa and R. Bessaïh, “Numerical investigations of heat transfer around a hot block subject to a cross-flow and an extended jet hole using ternary hybrid nanofluids,” Proc. Inst. Mech. Eng., Part C, vol. 236, no. 8, pp. 4412–4428, 2022. DOI: 10.1177/095440622110498.
  • V. V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transf., vol. 122, no. 3, pp. 557–565, 2000. DOI: 10.1115/1.1287793.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow,” Washington, DC: Hemisphere, 1980,
  • B. Boudraa and R. Bessaïh, “Numerical investigation of jet impingement cooling an isothermal surface using extended jet holes with various binary hybrid nanofluids,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105560, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105560.
  • B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence. London, UK: Academic Press, 1972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.