53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy minimization study of Maxwell nanofluid flow using oxides nanoparticles under transpiration and magnetic dissipation effects

ORCID Icon, &
Received 05 May 2023, Accepted 05 Jul 2023, Published online: 19 Jul 2023

References

  • N. Sandeep and C. Sulochana, “Momentum and heat transfer behaviour of Jeffrey, Maxwell and Oldroyd-B nanofluids past a stretching surface with non-uniform heat source/sink,” Ain Shams Eng. J., vol. 9, no. 4, pp. 517–524, 2018. DOI: 10.1016/j.asej.2016.02.008.
  • K. Sadeghy, A. H. Najafi and M. Saffaripour, “Sakiadis flow of an upper-convected Maxwell fluid,” Int. J. Non-Linear Mech., vol. 40, no. 9, pp. 1220–1228, 2005. DOI: 10.1016/j.ijnonlinmec.2005.05.006.
  • R. A. Damseh and B. A. Shannak, “Visco-elastic fluid flow past an infinite vertical porous plate in the presence of first-order chemical reaction,” Appl. Math. Mech.-Engl. Ed., vol. 31, no. 8, pp. 955–962, 2010. DOI: 10.1007/s10483-010-1330-z.
  • J. Zhao, L. Zheng, X. Zhang and F. Liu, “Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate,” Int. J. Heat Mass Transf., vol. 97, pp. 760–766, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.059.
  • J. Y. Jang and W. J. Chang, “Buoyancy-induced inclined boundary layer flow in a porous medium resulting from combined heat and mass buoyancy effects,” Int. Commun. Heat Mass Transf., vol. 15, no. 1, pp. 17–30, 1988. DOI: 10.1016/0735-1933(88)90003-6.
  • S. Shateyi, “Thermal radiation and buoyancy effects on heat and mass transfer over a semi-infinite stretching surface with suction and blowing,” J. Appl. Math., vol. 2008, pp. 1–12, 2008. DOI: 10.1155/2008/414830.
  • A. Abbasi, I. Ahmad, N. Ali and T. Hayat, “An analysis of peristaltic motion of compressible convected Maxwell fluid,” AIP Adv., vol. 6, no. 1, pp. 015119, 2016. DOI: 10.1063/1.4940896.
  • M. B. Ashraf, T. Hayat, S. A. Shehzad and A. Alsaedi, “Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition,” AIP Adv., vol. 5, no. 2, pp. 027134, 2015. DOI: 10.1063/1.4913719.
  • M. Renardy and X. Wang, “Boundary layers for the upper convected Maxwell fluid,” J. Non-Newton. Fluid Mech., vol. 189–190, pp. 14–18, 2012. DOI: 10.1016/j.jnnfm.2012.09.010.
  • Z. S. Hu and J. X. Dong, “Study on antiwear and reducing friction additive of nanometer titanium oxide,” Wear., vol. 216, no. 1, pp. 92–96, 1998. DOI: 10.1016/S0043-1648(97)00252-4.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • S. Lee, S. S. Choi, S. A. Li and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transf., vol. 121, no. 2, pp. 280–289, 1999. 1999. DOI: 10.1115/1.2825978.
  • Y. Nagasaka and A. Nagashima, “Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method,” J. Phys. E: Sci. Instrum., vol. 14, no. 12, pp. 1435–1440, 1981. DOI: 10.1088/0022-3735/14/12/020.
  • S. K. Das, N. Putra, P. Thiesen and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transf., vol. 125, no. 4, pp. 567–574, 2003. DOI: 10.1115/1.1571080.
  • K. Sharma, N. Vijay, D. Bhardwaj and R. Jindal, “Flow of water conveying Fe3O4 and Mn–ZnFe2O4 nanoparticles over a rotating disk: significance of thermophoresis and Brownian motion,” J. Magn. Magn. Mater., vol. 574, pp. 170710, 2023. DOI: 10.1016/j.jmmm.2023.170710.
  • N. Vijay and K. Sharma, “Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation,” Int. Commun. Heat Mass Transf., vol. 141, pp. 106545, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106545.
  • K. Sharma, S. Kumar and N. Vijay, “Insight into the motion of water-copper nanoparticles over a rotating disk moving upward/downward with viscous dissipation,” Int. J. Mod. Phys. B., vol. 36, no. 29, pp. 2250210, 2022. DOI: 10.1142/S0217979222502101.
  • H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow., vol. 29, no. 5, pp. 1326–1336, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.04.009.
  • I. Nkurikiyimfura, Y. Wang and Z. Pan, “Heat transfer enhancement by magnetic nanofluids—a review,” Renew. Sustain. Energy Rev., vol. 21, pp. 548–561, 2013. DOI: 10.1016/j.rser.2012.12.039.
  • A.M. Rashad, M.M. Rashidi, G. Lorenzini, S.E. Ahmed, A.M. Aly, “Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium,” Int. J. Heat Mass Transf., vol. 104, pp. 878–889, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.025.
  • T. Hayat, S. Ahmad, M. I. Khan and A. Alsaedi, “Simulation of ferromagnetic nanomaterial flow of Maxwell fluid,” Result Phys., vol. 8, pp. 34–40, 2018. DOI: 10.1016/j.rinp.2017.11.021.
  • W. Yu, D. M. France, J. L. Routbort and S. U. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, no. 5, pp. 432–460, 2008. DOI: 10.1080/01457630701850851.
  • M. Sheikholeslami, M. Hatami and D. D. Ganji, “Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process,” J. Mol. Liq., vol. 211, pp. 577–583, 2015. DOI: 10.1016/j.molliq.2015.07.006.
  • G. Sucharitha, P. Lakshminarayana and N. Sandeep, “Joule heating and wall flexibility effects on the peristaltic flow of magneto hydrodynamic nanofluid,” Int. J. Mech. Sci., vol. 131–132, pp. 52–62, 2017. DOI: 10.1016/j.ijmecsci.2017.06.043.
  • K. Sharma, N. Vijay, S. Kumar and R. Mehta, “Heat and mass transfer study of hydrocarbon based magnetic nanofluid (C1-20B) with geothermal viscosity,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., vol. 0, no. 0, pp. 095440892210799, 2022. DOI: 10.1177/09544089221079949.
  • M. M. Rashidi, N. V. Ganesh, A. A. Hakeem and B. Ganga, “Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation,” J. Mol. Liq., vol. 198, pp. 234–238, 2014. DOI: 10.1016/j.molliq.2014.06.037.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji and S. Soleimani, “Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field,” J. Mol. Liq., vol. 193, pp. 174–184, 2014. DOI: 10.1016/j.molliq.2013.12.023.
  • S. Nadeem, R. U. Haq and Z. H. Khan, “Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 1, pp. 121–126, 2014. DOI: 10.1016/j.jtice.2013.04.006.
  • G. Sucharitha, K. Vajravelu and P. Lakshminarayana, “Magnetohydrodynamic nanofluid flow in a non-uniform aligned channel with joule heating,” J. Nanofluids, vol. 8, no. 7, pp. 1373–1384, 2019. DOI: 10.1166/jon.2019.1694.
  • K. Sharma, N. Vijay, D. Ram and I. L. Animasaun, “Significance of geothermal viscosity for the magnetic fluid flow between co-rotating porous surfaces,” Numer. Heat Transf.; A: Appl., pp. 1–12, 2023. DOI: 10.1080/10407782.2023.2167754.
  • D. Ram, D. S. Bhandari, D. Tripathi and K. Sharma, “Propagation of H1N1 virus through saliva movement in oesophagus: a mathematical model,” Eur. Phys. J. Plus., vol. 137, no. 7, pp. 866, 2022. DOI: 10.1140/epjp/s13360-022-03070-2.
  • D. Ram, D. S. Bhandari, K. Sharma and D. Tripathi, “Progression of blood-borne viruses through bloodstream: a comparative mathematical study,” Comput Method. Program Biomed., vol. 232, pp. 107425, 2023. DOI: 10.1016/j.cmpb.2023.107425.
  • K. Sharma, N. Vijay and S. Kumar, “Significance of geothermal viscosity and heat generation/absorption on magnetic nanofluid flow and heat transfer,” Numer. Heat Transf.; A: Appl., vol. 82, no. 3, pp. 70–81, 2022. DOI: 10.1080/10407782.2022.2066921.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop and K. Al-Salem, “MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid,” J. Magn. Magn. Mater., vol. 452, pp. 193–204, 2018. DOI: 10.1016/j.jmmm.2017.12.075.
  • Z. Iqbal, E. Azhar, Z. Mehmood, E. N. Maraj and A. Kamran, “Computational analysis of engine-oil based magnetite nanofluidic problem inspired with entropy generation,” J. Mol. Liq., vol. 230, pp. 295–304, 2017. DOI: 10.1016/j.molliq.2017.01.026.
  • R. Muhammad, M. I. Khan, N. B. Khan and M. Jameel, “Magneto hydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation,” Comput Method Program. Biomed., vol. 189, pp. 105294, 2020. DOI: 10.1016/j.cmpb.2019.105294.
  • C. O. K. Chen, Y. T. Yang and K. H. Chang, “Entropy generation of laminar-forced convection along the wavy surface,” IJEX, vol. 7, no. 5, pp. 564–578, 2010. DOI: 10.1504/IJEX.2010.034929.
  • A. Aziz, W. Jamshed and T. Aziz, “Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity,” Open Phys., vol. 16, no. 1, pp. 123–136, 2018. DOI: 10.1515/phys-2018-0020.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 9–10, pp. 2002–2018, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • G. Huminic, A. Huminic, I. Morjan and F. Dumitrache, “Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles,” Int. J. Heat Mass Transf., vol. 54, no. 1–3, pp. 656–661, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.005.
  • W. J. Minkowycz, E. M. Sparrow and J. P. Abraham, eds., Nanoparticle Heat Transfer and Fluid Flow, vol. 4, Boca Raton, FL, USA: CRC Press, Taylor & Francis Group, 2017.
  • V. Bianco, B. Buonomo, A. di Pasqua and O. Manca, “Heat transfer enhancement of laminar impinging slot jets by nanofluids and metal foams,” Therm. Sci. Eng. Prog., vol. 22, pp. 100860, 2021. DOI: 10.1016/j.tsep.2021.100860.
  • L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous stretching surface with variable temperature,” J. Heat Transf., vol. 107, no. 1, pp. 248–250, 1985. DOI: 10.1115/1.3247387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.