113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Natural convection heat transfer in a three-dimensional enclosure under the effect of heated pin-fins of various shapes

ORCID Icon, , , &
Received 07 Dec 2022, Accepted 24 Jul 2023, Published online: 06 Aug 2023

References

  • A. Rajan and K. S. Reddy, “Convective heat loss prediction from conical cavity receiver of solar parabolic dish collector using numerical method and artificial neural network,” Numer. Heat Transf. A., vol. 83, no. 6, pp. 626–649, 2023. DOI: 10.1080/10407782.2022.2102338.
  • N. Nourdanesh, S. Hossainpour, and K. Adamiak, “Numerical simulation and optimization of natural convection heat transfer enhancement in solar collectors using electrohydrodynamic conduction pump,” Appl. Therm. Eng., vol. 180, pp. 115825, 2020. DOI: 10.1016/j.applthermaleng.2020.115825.
  • H. Hassan and N. Y. A. Shafey, “3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink,” Int. J. Therm. Sci., vol. 159, pp. 106585, 2021. DOI: 10.1016/j.ijthermalsci.2020.106585.
  • S. Bower and J. Saylor, “A study of the Sherwood–Rayleigh relation for water undergoing natural convection-driven evaporation,” Int. J. Heat Mass Transf., vol. 52, no. 13–14, pp. 3055–3063, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.01.034.
  • Y. Cherif, E. Sassine, L. Zalewski, K. Souidi, and S. Lassue, “Experimental analysis of natural convection and flow visualization in an asymmetrically heated open vertical channel,” J. Therm. Sci. Engine. App., vol. 11, no. 5, pp. 051020, 2019. DOI: 10.1115/1.4043533.
  • A. Mostafazadeh, D. Toghraie, R. Mashayekhi, and O. A. Akbari, “Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single- and two-phase approaches,” J. Therm. Anal. Calorim., vol. 138, no. 1, pp. 779–794, 2019. DOI: 10.1007/s10973-019-08236-2.
  • D. Toghraie, R. Mashayekhi, H. Arasteh, S. Sheykhi, M. Niknejadi, and A. J. Chamkha, “Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions,” HFF, vol. 30, no. 4, pp. 1795–1814, 2020. DOI: 10.1108/HFF-11-2018-0628.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transf. A., vol. 71, no. 11, pp. 1159–1173, 2017. DOI: 10.1080/10407782.2017.1337990.
  • P. Barnoon, D. Toghraie, R. B. Dehkordi, and M. Afrand, “Two phase natural convection and thermal radiation of non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders,” Int. Comm. Heat Mass Transf., vol. 108, pp. 104285, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104285.
  • M. O. Qidwai and M. M. Hasan, “Effect of variation of cylindrical pin fins height on the overall performance of microchannel heat sink,” J. Proc. Mech. Eng., vol. 233, no. 5, pp. 980–990, 2019. DOI: 10.1177/0954408918821777.
  • R. Deshmukh and V. Raibhole, “Experimental and numerical analysis of effect of combined drop-shape pin fins and plate fins type heat sink under natural convection,” Numer. Heat Transf. A., pp. 1–26, 2023. DOI: 10.1080/10407782.2023.2195128.
  • M. Gholami, M. R. Nazari, M. H. Talebi, F. Pourfattah, O. A. Akbari, and D. Toghraie, “Natural convection heat transfer enhancement of different nanofluids by adding dimple fins on a vertical channel wall,” Chin. J. Chem. Eng., vol. 28, no. 3, pp. 643–659, 2020. DOI: 10.1016/j.cjche.2019.11.001.
  • S. A. Nada, “Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate,” Int. J. Heat Mass Transf., vol. 50, no. 3–4, pp. 667–679, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.07.010.
  • S. J. Kim, D. K. Kim, and H. H. Oh, “Comparison of fluid flow and thermal characteristics of plate-fin and pin-fin heat sinks subject to a parallel flow,” Heat Transf. Eng., vol. 29, no. 2, pp. 169–177, 2008. DOI: 10.1080/01457630701686669.
  • H. Yüncü and G. Anbar, “An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer,” Heat Mass Transf., vol. 33, no. 5–6, pp. 507–514, 1998. DOI: 10.1007/s002310050222.
  • A. Güvenç and H. Yüncü, “An experimental investigation on performance of fins on a horizontal base in free convection heat transfer,” Heat Mass Transf., vol. 37, no. 4–5, pp. 409–416, 2001. DOI: 10.1007/s002310000139.
  • A. A. Sertkaya, Ş. Bilir, and S. Kargıcı, “Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection,” Energy, vol. 36, no. 3, pp. 1513–1517, 2011. DOI: 10.1016/j.energy.2011.01.014.
  • E. A. M. Elshafei, “Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins,” J. Mansoura Eng., vol. 34, no. 4, pp. 83–95, 2020. DOI: 10.21608/bfemu.2020.126775.
  • M. Mobedi and H. Yüncü, “A three dimensional numerical study on natural convection heat transfer from short horizontal rectangular fin array,” Heat Mass Transf., vol. 39, no. 4, pp. 267–275, 2003. DOI: 10.1007/s00231-002-0360-5.
  • R. L. Frederick and S. G. Moraga, “Three-dimensional natural convection in finned cubical enclosures,” Int. J. Heat Fluid Flow, vol. 28, no. 2, pp. 289–298, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.03.005.
  • E. Bilgen, “Natural convection in cavities with a thin fin on the hot wall,” Int. J. Heat Mass Transf., vol. 48, no. 17, pp. 3493–3505, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.03.016.
  • S. Baskaya, M. Sivrioglu, and M. Ozek, “Parametric study of natural convection heat transfer from horizontal rectangular fin arrays,” Int. J. Therm. Sci., vol. 39, no. 8, pp. 797–805, 2000. DOI: 10.1016/S1290-0729(00)00271-4.
  • A. K. Saha and S. Chanda, “Fully-developed natural convection in a periodic array of pin-fins,” Int. J. Therm. Sci., vol. 137, pp. 325–336, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.020.
  • R. Mashayekhi, E. Khodabandeh, O. A. Akbari, D. Toghraie, M. Bahiraei, and M. Gholami, “CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink,” J. Therm. Anal. Calorim., vol. 134, no. 3, pp. 2305–2315, 2018. DOI: 10.1007/s10973-018-7671-3.
  • E. Khodabandeh, S. A. Rozati, M. Joshaghani, O. A. Akbari, S. Akbari, and D. Toghraie, “Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs,” J. Therm. Anal. Calorim., vol. 136, no. 3, pp. 1333–1345, 2019. DOI: 10.1007/s10973-018-7826-2.
  • A. K. Da Silva and L. Gosselin, “On the thermal performance of an internally finned three-dimensional cubic enclosure in natural convection,” Int. J. Therm. Sci., vol. 44, no. 6, pp. 540–546, 2005. DOI: 10.1016/j.ijthermalsci.2004.11.011.
  • Z. Bocu and Z. Altac, “Laminar natural convection heat transfer and air flow in three-dimensional rectangular enclosures with pin arrays attached to hot wall,” Appl. Therm. Eng., vol. 31, no. 16, pp. 3189–3195, 2011. DOI: 10.1016/j.applthermaleng.2011.05.045.
  • E. Canli, M. Ozdemir, and A. A. Sertkaya, “Numerical comparison of three different pin fin heat sink orientations,” presented at the Proc. CHT-21 ICHMT Int. Symp. Adv. Comp. Heat Transf., 2021. pp. 395–410. DOI: 10.1615/ICHMT.2021.CHT-21.320.
  • R. Sajedi, B. Osanloo, F. Talati, and M. Taghilou, “Splitter plate application on the circular and square pin fin heat sinks,” Microelectronics Rel., vol. 62, pp. 91–101, 2016. DOI: 10.1016/j.microrel.2016.03.026.
  • A. A. Al-Rashed, L. Kolsi, H. F. Oztop, N. Abu-Hamdeh, and M. N. Borjini, “Natural convection and entropy production in a cubic cavity heated via pin-fins heat sinks,” IJHT, vol. 35, no. 1, pp. 109–115, 2017. DOI: 10.18280/ijht.350115.
  • A. A. Sertkaya, M. Ozdemir, and E. Canli, “Effects of pin fin height, spacing and orientation to natural convection heat transfer for inline pin fin and plate heat sinks by experimental investigation,” Int. J. Heat Mass Transf., vol. 177, pp. 121527, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121527.
  • A. Bejan, Convection Heat Transfer. New York: John Wiley & Sons, 2013.
  • L. Koufi, Y. Cherif, Z. Younsi, and H. Naji, “Double-diffusive natural convection in a mixture-filled cavity with walls’ opposite temperatures and concentrations,” Heat Trans. Eng., vol. 40, no. 15, pp. 1268–1285, 2018. DOI: 10.1080/01457632.2018.1460928.
  • E. Canli, A. Ates, and Ş. Bilir, “Derivation of dimensionless governing equations for axisymmetric incompressible turbulent flow heat transfer based on standard k-ε model,” Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, pp. 1096–1111, 2020. DOI: 10.35414/akufemubid.821009.
  • Y. L. He, W. W. Yang, and W. Q. Tao, “Three-dimensional numerical study of natural convective heat transfer of liquid in a cubic enclosure,” Numer. Heat Transf. A., vol. 47, no. 9, pp. 917–934, 2005. DOI: 10.1080/10407780590921917.
  • Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications. India: McGrawHill Education, 2016.
  • U. Manual, “ANSYS FLUENT 12.0,” Theory Guide, 2009.
  • C. Wu, H. W. Tang, and Y. T. Yang, “Numerical simulation and optimization of turbulent flows through perforated circular pin fin heat sinks,” Numer. Heat Transf. A., vol. 71, no. 2, pp. 172–188, 2017. DOI: 10.1080/10407782.2016.1264727.
  • M. M. Rahman, “Avoiding under-relaxations in SIMPLE algorithm,” Numer. Heat Transf. B., vol. 78, no. 5, pp. 310–329, 2020. DOI: 10.1080/10407790.2020.1787043.
  • S. P. Malkeson, S. Alshaaili, and N. Chakraborty, “Numerical investigation of steady state laminar natural convection of power-law fluids in side-cooled trapezoidal enclosures heated from the bottom,” Numer. Heat Transf. A., vol. 83, no. 7, pp. 770–789, 2023. DOI: 10.1080/10407782.2022.2157353.
  • A. Atia, B. Ghernaout, S. Bouabdallah, and R. Bessaih, “Three-dimensional oscillatory mixed convection in a Czochralski silicon melt under the axial magnetic field,” Appl. Therm. Eng., vol. 105, pp. 704–715, 2016. DOI: 10.1016/j.applthermaleng.2016.03.087.
  • J. Ravnik, L. Škerget, and Z. Žunič, “Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM,” Int. J. Heat Mass Transf., vol. 51, no. 17–18, pp. 4517–4527, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.01.018.
  • R. J. Krane and J. Jessee, “Some detailed field measurements for a natural convection flow in a vertical square enclosure,” Proc. Asme-Jsme Therm. Engin. Joint Conf., 1983., pp. 323–329.
  • A. Atia, B. Ghernaout, and S. Bouabdallah, LME, Laboratory of Mechanics, University of Laghouat, Laghouat 03000, Algeria., “Transition from steady to oscillatory flow natural convection of low-Pr fluids in 3D Bridgman configuration for crystal growth,” JAFM, vol. 11, no. 4, pp. 1021–1031, 2018. DOI: 10.29252/jafm.11.04.27603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.