82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization and sensitivity analysis on axisymmetric motile microorganism flow of viscoelastic nanofluid over a spinning circular disk with a central composite model

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 10 Apr 2023, Accepted 02 Aug 2023, Published online: 24 Aug 2023

References

  • D.-H. Doh, M. Muthtamilselvan, B. Swathene and E. Ramya, “Homogeneous and heterogeneous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM,” Math. Comput. Simul., vol. 168, pp. 90–110, Feb. 2020. DOI: 10.1016/j.matcom.2019.08.005.
  • M. I. Khan, “Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk,” Int. Commun. Heat Mass Transfer., vol. 122, pp. 105177, Mar. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105177.
  • S. Mandal and G. C. Shit, “Entropy analysis on unsteady MHD biviscosity nanofluid flow with convective heat transfer in a permeable radiative stretchable rotating disk,” Chin. J. Phys., vol. 74, pp. 239–255, Dec. 2021. DOI: 10.1016/j.cjph.2021.07.036.
  • M. K. Nayak, “MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation,” Int. J. Mech. Sci., vol. 124-125, pp. 185–193, May 2017. DOI: 10.1016/j.ijmecsci.2017.03.014.
  • S. Dinarvand and A. Mahdavi Nejad, “Off-centered stagnation point flow of an experimental-based hybrid nanofluid impinging to a spinning disk with low to high non-alignments,” HFF, vol. 32, no. 8, pp. 2799–2818, Jun. 2022. DOI: 10.1108/HFF-09-2021-0637/FULL/XML.
  • E. Ragupathi, D. Prakash, M. Muthtamilselvan and Q. M. Al-Mdallal, “Impact of thermal nonequilibrium on flow through a rotating disk with power law index in porous media occupied by Ostwald-de-Waele nanofluid,” J. Non-Equilibrium Thermodyn., vol. 47, no. 4, pp. 375–394, Oct. 2022. DOI: 10.1515/JNET-2022-0030/MACHINEREADABLECITATION/RIS.
  • M. Izady, S. Dinarvand, I. Pop and A. J. Chamkha, “Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: a development on Falkner–Skan problem,” Chin. J. Phys., vol. 74, pp. 406–420, Dec. 2021. DOI: 10.1016/j.cjph.2021.10.018.
  • E. A. Algehyne, N. H. Altaweel, A. Saeed, A. Dawar, M. Ramzan, and P. Kumam, “A semi-analytical passive strategy to examine the water-ethylene glycol (50:50)-based hybrid nanofluid flow over a spinning disk with homogeneous–heterogeneous reactions,” Sci. Rep. , vol. 12, no. 1, pp. 17105, Oct. 2022. DOI: 10.1038/s41598-022-21080-z.
  • M. K. Sarangi, D. N. Thatoi, S. Shaw, M. Azam, A. J. Chamkha and M. K. Nayak, “Hydrothermal behavior and irreversibility analysis of Bödewadt flow of radiative and dissipative ternary composite nanomaterial due to a stretched rotating disk,” Materials Sci. Engineering: b, vol. 287, pp. 116124, Jan. 2023. DOI: 10.1016/j.mseb.2022.116124.
  • S. Dinarvand and M. N. Rostami, “Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: a novel hybridity model with analysis of shape factor effects,” Proc. Institut. Mech. Engineers, Part E: J. Process Mech. Engng., vol. 234, no. 2, pp. 193–205, 2020. DOI: 10.1177/0954408920906274.
  • S. E. Ahmed, A. A. M. Arafa and S. A. Hussein, “Bioconvective flow of a variable properties hybrid nanofluid over a spinning disk with Arrhenius activation energy, Soret and Dufour impacts,” Numer. Heat Transfer, Part A: Applicat., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2193709.
  • M. D. Shamshuddin et al., “MHD bioconvection microorganism nanofluid driven by a stretchable plate through porous media with an induced heat source,” Waves Random Complex Media, pp. 1–25, 2022. DOI: 10.1080/17455030.2022.2126024.
  • P. P. Humane, V. S. Patil, M. D. Shamshuddin, G. R. Rajput and A. B. Patil, “Role of bioconvection on the dynamics of chemically active Casson nanofluid flowing via an inclined porous stretching sheet with convective conditions,” Int. J. Modelling Simulation, pp. 1–20, 2023. DOI: 10.1080/02286203.2022.2164156.
  • A. R. Bestman, “Natural convection boundary layer with suction and mass transfer in a porous medium,” Int. J. Energy Res., vol. 14, no. 4, pp. 389–396, 1990. DOI: 10.1002/er.4440140403.
  • M. K. Nayak, F. Mabood, A. S. Dogonchi and W. A. Khan, “Electromagnetic flow of SWCNT/MWCNT suspensions with optimized entropy generation and cubic auto catalysis chemical reaction,” Int. Commun. Heat Mass Transfer, vol. 120, pp. 104996, Jan. 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104996.
  • Z. Shafique, M. Mustafa and A. Mushtaq, “Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy,” Results Phys., vol. 6, pp. 627–633, 2016. DOI: 10.1016/j.rinp.2016.09.006.
  • F. Mabood, M. K. Nayak and A. J. Chamkha, “Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy,” Eur. Phys. J. Plus., vol. 134, no. 9, pp. 1–12, 2019. DOI: 10.1140/epjp/i2019-12716-9.
  • M. Ijaz, M. Ayub and H. Khan, “Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko nanofluid: rotating disk,” Heliyon, vol. 5, no. 6, pp. e01863, 2019. DOI: 10.1016/j.heliyon.2019.e01863.
  • M. K. Nayak, “Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium,” Meccanica, vol. 51, no. 8, pp. 1699–1711, Aug. 2016. DOI: 10.1007/S11012-015-0329-3/METRICS.
  • Y. M. Chu et al., “Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: a Buongiorno model analysis,” Int. Commun. Heat Mass Transfer., vol. 118, pp. 104893, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104893.
  • T. Hayat, A. A. Khan, F. Bibi and S. Farooq, “Activation energy and non-Darcy resistance in magneto peristalsis of Jeffrey material,” J. Phys. Chem. Solids, vol. 129, pp. 155–161, 2019. DOI: 10.1016/j.jpcs.2018.12.044.
  • S. Ahmad, M. Farooq, A. Anjum and N. A. Mir, “Squeezing flow of convectively heated fluid in porous medium with binary chemical reaction and activation energy,” Adv. Mech. Engng., vol. 11, no. 10, pp. 168781401988377, 2019. DOI: 10.1177/1687814019883774.
  • F. Mabood, T. Muhammad, M. K. Nayak, H. Waqas and O. D. Makinde, “EMHD flow of non-Newtonian nanofluids over thin needle with Robinson’s condition and Arrhenius pre-exponential factor law,” Phys. Scr., vol. 95, no. 11, pp. 115219, Oct. 2020. DOI: 10.1088/1402-4896/abc0c3.
  • K. Jabeen, “Bioconvective Carreau nanofluid flow with magnetic dipole, viscous, and ohmic dissipation effects subject to Arrhenius activation energy,” Numer. Heat Transfer, Part A: Applicat., pp. 1–26, 2023. DOI: 10.1080/10407782.2023.2221005.
  • N. Acharya and K. Das, “Three-dimensional rotating flow of Cu–Al2O3/kerosene oil hybrid nanofluid in presence of activation energy and thermal radiation,” Numer. Heat Transfer, Part A: Applicat., vol. 84, no. 6, pp. 586–603, 2023. DOI: 10.1080/10407782.2022.2147111.
  • M. Faiz et al., “Multiple slip effects on time dependent axisymmetric flow of magnetized Carreau nanofluid and motile microorganisms,” Sci. Rep., vol. 12, no. 1, pp. 14259, 2022. DOI: 10.1038/s41598-022-18344-z.
  • M. S. Alqarni, S. Yasmin, H. Waqas and S. A. Khan, “Recent progress in melting heat phenomenon for bioconvection transport of nanofluid through a lubricated surface with swimming microorganisms,” Sci. Rep., vol. 12, no. 1, pp. 8447, May 2022. DOI: 10.1038/s41598-022-12230-4.
  • A. Shafiq, A. B. Çolak and T. N. Sindhu, “Optimization of bioconvective magnetized Walter’s B nanofluid flow towards a cylindrical disk with artificial neural networks,” Lubricants, vol. 10, no. 9, pp. 209, Aug. 2022. DOI: 10.3390/lubricants10090209.
  • S. Dinarvand, S. M. Mousavi, M. Yousefi and M. Nademi Rostami, “MHD flow of MgO-Ag/water hybrid nanofluid past a moving slim needle considering dual solutions: an applicable model for hot-wire anemometer analysis,” HFF, vol. 32, no. 2, pp. 488–510, Jan. 2022. DOI: 10.1108/HFF-01-2021-0042/FULL/XML.
  • F. Wang, S. Ahmad, Q. Al Mdallal, M. Alammari, M. N. Khan and A. Rehman, “Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition,” Sci. Rep., vol. 12, no. 1, pp. 2220, Feb. 2022. DOI: 10.1038/s41598-022-04948-y.
  • S. Mandal, G. C. Shit, S. Shaw and O. D. Makinde, “Entropy analysis of thermo-solutal stratification of nanofluid flow containing gyrotactic microorganisms over an inclined radiative stretching cylinder,” Thermal Sci. Engng. Progress, vol. 34, pp. 101379, Sep. 2022. DOI: 10.1016/j.tsep.2022.101379.
  • J. Cui, S. Munir, S. F. Raies, U. Farooq and R. Razzaq, “Non-similar aspects of heat generation in bioconvection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid,” Alexandria Engng. J., vol. 61, no. 7, pp. 5397–5411, Jul. 2022. DOI: 10.1016/j.aej.2021.10.056.
  • A. Ghasemian, S. Dinarvand, A. Adamian and M. A. Sheremet, “Unsteady General Three-Dimensional Stagnation Point Flow of a Maxwell/Buongiorno Non-Newtonian Nanofluid,” J. Nanofluids, vol. 8, no. 7, pp. 1544–1559, 2019. Jul DOI: 10.1166/jon.2019.1701.
  • S. Dinarvand, H. Berrehal, I. Pop and A. J. Chamkha, “Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem,” HFF, vol. 33, no. 3, pp. 1144–1160, Jan. 2023. DOI: 10.1108/HFF-08-2022-0489/FULL/XML.
  • L. Ali, B. Ali, X. Liu, S. Ahmed and M. A. Shah, “Analysis of bio-convective MHD Blasius and Sakiadis flow with Cattaneo-Christov heat flux model and chemical reaction,” Chinese J. Physics, vol. 77, pp. 1963–1975, Jun. 2022. DOI: 10.1016/j.cjph.2021.12.008.
  • Y.-Q. Song et al., “Aspects of thermal diffusivity and melting phenomenon in Carreau nanofluid flow confined by nonlinear stretching cylinder with convective Marangoni boundary constraints,” Math. Comput. Simul., vol. 195, pp. 138–150, May 2022. DOI: 10.1016/j.matcom.2022.01.001.
  • B. Mahanthesh, S. A. Shehzad, J. Mackolil and N. S. Shashikumar, “Heat transfer optimization of hybrid nanomaterial using modified Buongiorno model: a sensitivity analysis,” Int. J. Heat Mass Transf., vol. 171, pp. 121081, Jun. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121081.
  • M. Saraswathy, D. Prakash, M. Muthtamilselvan and Q. M. Al Mdallal, “Arrhenius energy on asymmetric flow and heat transfer of micropolar fluids with variable properties: a sensitivity approach,” Alexandria Engng J., vol. 61, no. 12, pp. 12329–12352, Dec. 2022. DOI: 10.1016/j.aej.2022.06.015.
  • B. Mahanthesh, J. Mackolil and S. M. Mallikarjunaiah, “Response surface optimization of heat transfer rate in Falkner-Skan flow of ZnO − EG nanoliquid over a moving wedge: sensitivity analysis,” Int. Commun. Heat Mass Transfer., vol. 125, pp. 105348, Jun. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105348.
  • P. Rana, B. Mahanthesh, K. Thriveni and T. Muhammad, “Significance of aggregation of nanoparticles, activation energy, and Hall current to enhance the heat transfer phenomena in a nanofluid: a sensitivity analysis,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2065043.
  • B. Mahanthesh, K. Thriveni, P. Rana and T. Muhammad, “Radiative heat transfer of nanomaterial on a convectively heated circular tube with activation energy and nanoparticle aggregation kinematic effects,” Int. Commun. Heat Mass Transfer., vol. 127, pp. 105568, Oct. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105568.
  • P. Rana and G. Gupta, “Sensitivity computation of Von Kármán’s swirling flow of nanoliquid under nonlinear Boussinesq approximation over a rotating disk with Stefan blowing and multiple slip effects,” Waves Random Complex Media, pp. 1–31, 2022. DOI: 10.1080/17455030.2022.2112633.
  • J. Mackolil and B. Mahanthesh, “Computational simulation of surface tension and gravitation-induced convective flow of a nanoliquid with cross-diffusion: an optimization procedure,” Appl. Math. Comput., vol. 425, pp. 127108, Jul. 2022. DOI: 10.1016/j.amc.2022.127108.
  • P. Rana and G. Gupta, “FEM solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: optimization using Response Surface Methodology,” Math. Comput. Simul., vol. 201, pp. 121–140, Nov. 2022. DOI: 10.1016/j.matcom.2022.05.012.
  • M. M. Fayyadh et al., “The mathematical model for heat transfer optimization of Carreau fluid conveying magnetized nanoparticles over a permeable surface with activation energy using response surface methodology,” ZAMM - J. Appl. Math. Mech./Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 102, no. 11, pp. e202100185, Nov. 2022. DOI: 10.1002/ZAMM.202100185.
  • P. Rana and A. Kumar, “Nonlinear buoyancy driven flow of hybrid nanoliquid past a spinning cylinder with quadratic thermal radiation,” Int. Commun. Heat Mass Transfer., vol. 139, pp. 106439, Dec. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106439.
  • A. Abbasi, F. Mabood, W. Farooq and M. Batool, “Bioconvective flow of viscoelastic Nanofluid over a convective rotating stretching disk,” Int. Commun. Heat Mass Transfer., vol. 119, pp. 104921, Dec. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104921.
  • B. Mahanthesh, G. Lorenzini, F. M. Oudina and I. L. Animasaun, “Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces,” J. Therm. Anal. Calorim., vol. 141, no. 1, pp. 37–44, Jul. 2020. DOI: 10.1007/s10973-019-08985-0.
  • U. Khan, S. Bilal, A. Zaib, O. D. Makinde and A. Wakif, “Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation,” Numer. Methods Partial Differ. Equ., vol. 38, no. 3, pp. 22620, Nov. 2020. DOI: 10.1002/num.22620.
  • R. S. Rivlin, “Further remarks on the stress-deformation relations for isotropic materials,” J. Rational Mech. Anal., vol. 4, pp. 681–702, 1955. https://www.jstor.org/stable/24900379 (accessed Nov. 30, 2022).
  • J. E. Dunn and R. L. Fosdick, “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade,” Arch. Rational Mech. Anal., vol. 56, no. 3, pp. 191–252, Sep. 1974. DOI: 10.1007/BF00280970/METRICS.
  • D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid: A revised model,” Int. J. Heat Mass Transf., vol. 68, pp. 211–214, Jan. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.026.
  • A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Thermal Sci., vol. 49, no. 2, pp. 243–247, Feb. 2010. DOI: 10.1016/j.ijthermalsci.2009.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.