47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of nanoparticles loading to a novel hybrid TiO2-CNTs/water nanofluid on thermal performance enhancement

, , &
Received 20 Mar 2023, Accepted 14 Aug 2023, Published online: 27 Aug 2023

References

  • H. A. Tariq, A. A. Shoukat, M. Hassan and M. Anwar, “Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids,” J. Therm. Anal. Calorim., vol. 136, no. 5, pp. 2171–2182, 2019. DOI: 10.1007/s10973-018-7852-0.
  • I. A. Zakaria, W. A. N. W. Mohamed, N. H. A. Azid, M. A. Suhaimi and W. H. Azmi, “Heat transfer and electrical discharge of hybrid nanofluid coolants in a fuel cell cooling channel application,” Appl. Therm. Eng., vol. 210, pp. 118369, 2022. DOI: 10.1016/j.applthermaleng.2022.118369.
  • B. Kristiawan, E. Surojo, S. Fitriana, A. T. Wijayanta, T. Miyazaki and K. Enoki, Investigation on Tribological Behavior of Al2O3 Nano Cutting Fluid under Minimum Quantity Lubrication Technique, Yokohama, Japan: JSME Annual Workshop, 2018.
  • S. Dayou, T. W. Ting and B. Vigolo, “Comparison of heat transfer performance of water-based graphene nanoplatelet- and multi-walled carbon nanotube-nanofluids in a concentric tube heat exchanger,” Diam. Relat. Mater., vol. 125, pp. 108976, 2022. DOI: 10.1016/j.diamond.2022.108976.
  • P. Thakur, S. S. Sonawane, S. H. Sonawane and B. A. Bhanvase, Nanofluids-based delivery system, encapsulation of nanoparticles for stability to make stable nanofluids, Encapsulation of Active Molecules and Their Delivery System, Elsevier Inc, 2020, pp. 141–152. DOI: 10.1016/B978-0-12-819363-1.00009-0.
  • S. Zeinali Heris, A. Kazemi-Beydokhti, S. H. Noie and S. Rezvan, “Numerical study on convective heat transfer of Al2O3/water, CuO/water and Cu/water nanofluids through square cross-section duct in laminar flow,” Eng. Appl. Comput. Fluid Mech., vol. 6, no. 1, pp. 1–14, 2012. DOI: 10.1080/19942060.2012.11015398.
  • S. Z. Heris, M. N. Esfahany and G. Etemad, “Numerical investigation of nanofluid laminar convective heat transfer through a circular tube,” Numer. Heat Transf.; A: Appl., vol. 52, no. 11, pp. 1043–1058, 2007. DOI: 10.1080/10407780701364411.
  • B. Mehrjou, S. Z. Heris and K. Mohamadifard, “Experimental study of CuO/water nanofluid turbulent convective heat transfer in square cross-section duct,” Exp. Heat Transf. Int. J., vol. 28, no. 3, pp. 282–297, 2015. DOI: 10.1080/08916152.2013.871606.
  • M. Kahani, S. Zeinali Heris and S. M. Mousavi, “Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube,” Heat Mass Transfer, vol. 50, no. 11, pp. 1563–1573, 2014. DOI: 10.1007/s00231-014-1367-4.
  • F. Riaz Siddiqui, C.-Y. Tso, H. Qiu, C. Y. H. Chao and S. Chung Fu, “Hybrid nanofluid spray cooling performance and its residue surface effects: toward thermal management of high heat flux devices,” Appl. Therm. Eng., vol. 211, pp. 118454, 2022. DOI: 10.1016/j.applthermaleng.2022.118454.
  • Odelu  , Ojjela  , Preeti  , "Numerical investigation of heat transport in alumina–silica hybrid nanofluid flow with modeling and simulation," Math Comput. Simul., vol. 193, no. pp. 100–122, 2022. DOI: 10.1016/j.matcom.2021.09.022.
  • S. Jana, A. Salehi-Khojin and W.-H. Zhong, “Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives,” Thermochim. Acta, vol. 462, no. 1–2, pp. 45–55, 2007. DOI: 10.1016/j.tca.2007.06.009.
  • K. Y. Leong, K. Z. Ku Ahmad, H. C. Ong, M. J. Ghazali and A. Baharum, “Synthesis and thermal conductivity characteristic of hybrid nanofluids – a review,” Renew. Sust. Energ. Rev., vol. 75, pp. 868–878, 2017. DOI: 10.1016/j.rser.2016.11.068.
  • A. Asadi, I. M. Alarifi and L. K. Foong, “An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid,” J. Mol. Liq., vol. 307, pp. 112987, 2020. DOI: 10.1016/j.molliq.2020.112987.
  • G. M. Moldoveanu, A. A. Minea, G. Huminic and A. Huminic, “Al2O3/TiO2 hybrid nanofluids thermal conductivity,” J. Therm. Anal. Calorim., vol. 137, no. 2, pp. 583–592, 2019. DOI: 10.1007/s10973-018-7974-4.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar, “Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids Surf. A: Physicochem. Eng., vol. 388, no. 1–3, pp. 41–48, 2011. DOI: 10.1016/j.colsurfa.2011.08.005.
  • M. Malika and S. S. Sonawane, “The sono-photocatalytic performance of a Fe2O3 coated TiO2 based hybrid nanofluid under visible light via RSM,” Colloids Surf. A: physicochem. Eng., vol. 641, pp. 128545, 2022. DOI: 10.1016/j.colsurfa.2022.128545.
  • M. Malika and S. S. Sonawane, “The sono-photocatalytic performance of a novel water based Ti+4 coated Al(OH)3-MWCNT’s hybrid nanofluid for dye fragmentation,” Int. J. Chem. React. Eng., vol. 19, no. 9, pp. 901–912, 2021. DOI: 10.1515/ijcre-2021-0092.
  • M. Amiri, S. Movahedirad and F. Manteghi, “Thermal conductivity of water and ethylene glycol nanofluids containing new modified surface SiO2-Cu nanoparticles: experimental and modeling,” Appl. Therm. Eng., vol. 108, pp. 48–53, 2016. DOI: 10.1016/j.applthermaleng.2016.07.091.
  • N. N. Esfahani, D. Toghraie and M. Afrand, “A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study,” Powder Technol., vol. 323, pp. 367–373, 2018. DOI: 10.1016/j.powtec.2017.10.025.
  • K. Farhana, et al., “Significance of alumina in nanofluid technology,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1107–1126, 2019. DOI: 10.1007/s10973-019-08305-6.
  • J. Zeng and Y. Xuan, “Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids,” Appl. Energy, vol. 212, pp. 809–819, 2018. DOI: 10.1016/j.apenergy.2017.12.083.
  • Z. Iqbal, E. N. Maraj, E. Azhar and Z. Mehmood, “A novel development of hybrid (MoS2−SiO2/H2O) nanofluidic curvilinear transport and consequences for effectiveness of shape factors,” J. Taiwan Inst. Chem. Eng., vol. 81, pp. 150–158, 2017. DOI: 10.1016/j.jtice.2017.09.037.
  • E. N. Maraj, Z. Iqbal, E. Azhar and Z. Mehmood, “A comprehensive shape factor analysis using transportation of MoS2-SiO2/H2O inside an isothermal semi vertical inverted cone with porous boundary,” Results Phys., vol. 8, pp. 633–641, 2018. DOI: 10.1016/j.rinp.2017.12.077.
  • H. Maddah, R. Aghayari, M. Mirzaee, M. H. Ahmadi, M. Sadeghzadeh and A. J. Chamkha, “Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 97, pp. 92–102, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.07.002.
  • L. Megatif, A. Ghozatloo, A. Arimi and M. Shariati-Niasar, “Investigation of Laminar convective heat transfer of a novel TiO2–CNT hybrid water-based nanofluid,” Exp. Heat Transf. Int. J., vol. 29, no. 1, pp. 124–138, 2016. DOI: 10.1080/08916152.2014.973974.
  • A. Dawar, S. Islam and Z. Shah, “A Comparative Analysis of the Performance of Magnetized Copper-Copper Oxide/Water and Copper-Copper Oxide/Kerosene Oil Hybrid Nanofluids Flowing Through an Extending Surface with Velocity Slips and Thermal Convective Conditions,” Int. J. Ambient Energy, vol. 3, no. 2, pp. 1–52, 2022. DOI: 10.1080/01430750.2022.2063387.
  • L. S. Sundar, M. K. Singh and A. C. M. Sousa, “Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids,” Int. Commun. Heat Mass Transf., vol. 52, pp. 73–83, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.01.012.
  • P. Thakur, N. Kumar and S. S. Sonawane, “Enhancement of pool boiling performance using MWCNT based nanofluids: a sustainable method for the wastewater and incinerator heat recovery,” Sustain. Energy Technol. Assess., vol. 45, pp. 101115, 2021. DOI: 10.1016/j.seta.2021.101115.
  • M. Kahani, S. Z. Heris and S. M. Mousavi, “Multiwalled carbon nanotube/water nanofluid or helical coiling technique, which of them is more effective?,” Ind. Eng. Chem. Res., vol. 52, no. 36, pp. 13183–13191, 2013. DOI: 10.1021/ie4010942.
  • M. Shanbedi, S. Z. Heris, A. Amiri, E. Hosseinipour, H. Eshghi and S. N. Kazi, “Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube,” Ener. Convers Manage, vol. 105, pp. 1366–1376, 2015. DOI: 10.1016/j.enconman.2015.09.002.
  • M. Savari, S. Rashidi, A. Amiri, M. Shanbedi, S. Zeinali Heris and S. N. Kazi, “Hydrodynamic and thermal performance prediction of functionalized MWNT-based water nanofluids under the laminar flow regime using the adaptive neuro-fuzzy inference system,” Numer. Heat Transf.; A: Appl., vol. 70, no. 1, pp. 103–116, 2016. DOI: 10.1080/10407782.2016.1139974.
  • M. Shanbedi, S. Zeinali Heris, A. Maskooki and H. Eshghi, “Statistical analysis of laminar convective heat transfer of mwcnt-deionized water nanofluid using the response surface methodology,” Numer. Heat Transf.; A: Appl., vol. 68, no. 4, pp. 454–469, 2015. DOI: 10.1080/10407782.2014.986003.
  • A. T. Wijayanta, I. Yaningsih, M. Aziz, T. Miyazaki and S. Koyama, “Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger,” Appl. Therm. Eng., vol. 145, pp. 27–37, 2018. DOI: 10.1016/j.applthermaleng.2018.09.009.
  • A. T. Wijayanta, T. Istanto, K. Kariya and A. Miyara, “Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles,” Exp. Therm. Fluid Sci., vol. 87, pp. 141–148, 2017. DOI: 10.1016/j.expthermflusci.2017.05.002.
  • B. Kristiawan, A. I. Rifa’i, K. Enoki, A. T. Wijayanta and T. Miyazaki, “Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube,” Powder Technol., vol. 376, pp. 254–262, 2020. DOI: 10.1016/j.powtec.2020.08.020.
  • A. I. Rifa’i, B. Kristiawan and A. T. Wijayanta, “Studi eksperimental perpindahan kalor konveksi, penurunan tekanan dan faktor gesekan pada alat penukar kalor menggunakan micro-fin tube,” Mekanika, vol. 18, no. 1, pp. 9–13, 2019. DOI: 10.20961/mekanika.v18i1.35040.
  • M. Kahani, S. Zeinali Heris and S. M. Mousavi, “Comparative study between metal oxide nanopowders on thermal characteristics of nanofluid flow through helical coils,” Powder Technol., vol. 246, pp. 82–92, 2013. DOI: 10.1016/j.powtec.2013.05.010.
  • M. Malika, R. Bhad and S. S. Sonawane, “ANSYS simulation study of a low volume fraction CuO–ZnO/water hybrid nanofluid in a shell and tube heat exchanger,” J. Indian Chem. Soc., vol. 98, no. 11, pp. 100200, 2021. DOI: 10.1016/j.jics.2021.100200.
  • S. Sivasankaran and M. Bhuvaneswari, “Numerical study on influence of water based hybrid nanofluid and porous media on heat transfer and pressure loss,” Case Stud. Therm. Eng., vol. 34, pp. 102022, 2022. DOI: 10.1016/j.csite.2022.102022.
  • M. Ghalandari, A. Maleki, A. Haghighi, M. Safdari Shadloo, M. Alhuyi Nazari and I. Tlili, “Applications of nanofluids containing carbon nanotubes in solar energy systems: a review,” J. Mol. Liq., vol. 313, pp. 113476, 2020. DOI: 10.1016/j.molliq.2020.113476.
  • G. Zhang, S. Jiang, W. Yao and C. Liu, “Enhancement of natural convection by carbon nanotube films covered microchannel-surface for passive electronic cooling devices,” ACS Appl. Mater. Interfaces, vol. 8, no. 45, pp. 31202–31211, 2016. DOI: 10.1021/acsami.6b08815.
  • Y. Wang, et al., “Application of carbon nanotube prepared from waste plastic to phase change materials: the potential for battery thermal management,” Waste Manag., vol. 154, pp. 96–104, 2022. DOI: 10.1016/j.wasman.2022.10.003.
  • S. M. S. Murshed and C. A. Nieto de Castro, “Superior thermal features of carbon nanotubes-based nanofluids – a review,” Renew. Sust. Energ. Rev., vol. 37, pp. 155–167, 2014. DOI: 10.1016/j.rser.2014.05.017.
  • C. P. M. de Oliveira, A. L. A. Lage, D. C. d S. Martins, N. D. S. Mohallem and M. M. Viana, “High surface area TiO2 nanoparticles: impact of carboxylporphyrin sensitizers in the photocatalytic activity,” Surf., vol. 21, pp. 100774, 2020. DOI: 10.1016/j.surfin.2020.100774.
  • Q. Jiang, X. Wang, Y. Zhu, D. Hui and Y. Qiu, “Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites,” Compos. B. Eng., vol. 56, pp. 408–412, 2014. DOI: 10.1016/j.compositesb.2013.08.064.
  • B. Kristiawan, K. Enoki, W. E. Juwana, R. A. Rachmanto, A. T. Wijayanta and T. Miyazaki, “Simulation-based assessment of the thermal-hydraulic performance of titania-based nanofluids in a circular-mini-channel tube,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 8022–8035, 2022. DOI: 10.1080/01430750.2022.2085797.
  • D. Liu and L. Yu, “Single-phase thermal transport of nanofluids in a minichannel,” J. Heat Transf., vol. 133, no. 3, 03 1009. DOI: 10.1115/1.4002462.
  • N. Zhao, S. Li, J. Yang, Z. Wang and H. Meng, “Numerical study of laminar flow and convection heat transfer of nanofluids inside circular tube,” AMR, vol. 960–961, pp. 299–303, 2014. www.scientific.net/AMR.960-961.299. DOI: 10.4028/www.scientific.net/AMR.960-961.299.
  • D. Kim, et al., “Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions,” Curr. Appl. Phys, vol. 9, no. 2, pp. e119–e123, 2009. DOI: 10.1016/j.cap.2008.12.047.
  • S. Zeinali Heris, S. H. Noie, E. Talaii and J. Sargolzaei, “Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 179, 2011. DOI: 10.1186/1556-276X-6-179.
  • P. C. Mishra, S. Mukherjee, S. K. Nayak and A. Panda, “A brief review on viscosity of nanofluids,” Int. Nano. Lett., vol. 4, no. 4, pp. 109–120, 2014. DOI: 10.1007/s40089-014-0126-3.
  • K. Bashirnezhad, et al., “Viscosity of nanofluids: a review of recent experimental studies,” Int Commun Heat Mass Transf, vol. 73, pp. 114–123, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.02.005.
  • P. Rathnakumar, K. Mayilsamy, S. Suresh and P. Murugesan, “Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids,” J. Nanosci. Nanotechnol., vol. 14, no. 3, pp. 2400–2407, 2014. DOI: 10.1166/jnn.2014.8505.
  • J. A. C. Cornelio, P. A. Cuervo, L. M. Hoyos-Palacio, J. Lara-Romero and A. Toro, “Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel–rail system,” J. Mater. Res. Technol., vol. 5, no. 1, pp. 68–76, 2016. DOI: 10.1016/j.jmrt.2015.10.006.
  • Z. Zhang, J. Liu, T. Wu and Y. Xie, “Effect of carbon nanotubes on friction and wear of a piston ring and cylinder liner system under dry and lubricated conditions,” Frict., vol. 5, no. 2, pp. 147–154, 2017. DOI: 10.1007/s40544-016-0126-6.
  • A. M. Hussein, K. V. Sharma, R. A. Bakar and K. Kadirgama, “The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube,” J. Nanomater., vol. 2013, pp. 1–12, 2013. DOI: 10.1155/2013/859563.
  • J. T. Cieśliński and P. Kozak, “Influence of nanoparticle concentration on convective heat transfer of water-Al2O3 nanofluids inside horizontal tubes,” AMM, vol. 831, pp. 208–215, 2016. www.scientific.net/AMM.831.208. DOI: 10.4028/www.scientific.net/AMM.831.208.
  • E. V. Timofeeva, W. Yu, D. M. France, D. Singh and J. L. Routbort, “Nanofluids for heat transfer: an engineering approach,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 182, 2011. DOI: 10.1186/1556-276X-6-182.
  • N. M. Labib, M. J. Nine, H. Afrianto, H. Chung and H. Jeong, “Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer,” Int. J. Therm. Sci., vol. 71, pp. 163–171, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.003.
  • T. L. Ba, G. Gróf, V. O. Odhiambo, S. Wongwises and I. M. Szilágyi, “A CFD study on heat transfer performance of SiO2-TiO2 nanofluids under turbulent flow,” Nanomater, vol. 12, no. 3, pp. 299, 2022. DOI: 10.3390/nano12030299.
  • V. Bianco, F. Chiacchio, O. Manca and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Appl. Therm. Eng., vol. 29, no. 17–18, pp. 3632–3642, 2009. DOI: 10.1016/j.applthermaleng.2009.06.019.
  • N. Hordy, D. Rabilloud, J.-L. Meunier and S. Coulombe, “High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors,” Sol. Energy, vol. 105, pp. 82–90, 2014. DOI: 10.1016/j.solener.2014.03.013.
  • N. F. A. Hamza and S. Aljabair, “Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger,” Heliyon, vol. 8, no. 12, pp. e11950, 2022. DOI: 10.1016/j.heliyon.2022.e11950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.