104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation on MHD pulsatile flow of third grade hybrid nanofluid in a vertical porous channel with nonuniform heat source/sink, variable viscosity, thermal conductivity, and Joule heating: A numerical study

, , , , ORCID Icon & ORCID Icon
Received 17 Jul 2023, Accepted 23 Aug 2023, Published online: 14 Sep 2023

References

  • O. D. Makinde and T. Chinyoka, “Numerical study of unsteady hydromagnetic Generalized Couette flow of a reactive third-grade fluid with asymmetric convective cooling,” Comput. Math. Appl., vol. 61, no. 4, pp. 1167–1179, 2011. DOI: 10.1016/j.camwa.2010.12.066.
  • T. Hayat, R. Riaz, A. Aziz and A. Alsaedi, “Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions,” Phys. A Stat. Mech. Appl., vol. 549, pp. 124006, 2020. DOI: 10.1016/j.physa.2019.124006.
  • S. Akar, J. A. Esfahani and S. A. Mousavi Shaegh, “A numerical investigation of magnetic field effect on blood flow as biomagnetic fluid in a bend vessel,” J. Magn. Magn. Mater., vol. 482, pp. 336–349, 2019. DOI: 10.1016/j.jmmm.2019.03.043.
  • A. S. Sabu, A. Mathew, T. S. Neethu and K. Anil George, “Statistical analysis of MHD convective ferro-nanofluid flow through an inclined channel with hall current, heat source and soret effect,” Thermal Sci. Eng. Prog, vol. 22, pp. 100816, 2021. DOI: 10.1016/j.tsep.2020.100816.
  • E. M. Abo-Eldahab and M. A. El Aziz, “Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption,” Int. J. Thermal Sci., vol. 43, no. 7, pp. 709–719, 2004. DOI: 10.1016/j.ijthermalsci.2004.01.005.
  • A. K. S and R. K, “Heat transfer in magnetohydrodynamic nanofluid flow past a circular cylinder,” Phys. Fluids, vol. 32, no. 4, pp. 045112, 2020. DOI: 10.1063/5.0005095.
  • N. S. Elgazery, “Nanofluids flow over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of inclined magnetic field,” J. Egypt Math. Soc., vol. 27, no. 1, pp. 1–26, 2019. DOI: 10.1186/s42787-019-0002-4.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, pp. 99–105, 1995.
  • D. Rajkumar and A. Subramanyam Reddy, “Pulsating electrically conducting flow of Au/SWCNTs-blood micropolar nanofluid in a porous channel with Ohmic heating, thermal radiation,” Phys. Scr., vol. 96, no. 12, pp. 125233, 2021. DOI: 10.1088/1402-4896/ac2e81.
  • R. R. Souza, et al., “Recent advances on the thermal properties and applications of nanofluids: from nanomedicine to renewable energies,” Appl. Thermal Eng., vol. 201, pp. 117725, 2022. DOI: 10.1016/j.applthermaleng.2021.117725.
  • A. Khan, Z. Shah, E. Alzahrani and S. Islam, “Entropy generation and thermal analysis for rotary motion of hydromagnetic Casson nanofluid past a rotating cylinder with Joule heating effect,” Int. Commun. Heat Mass Transfer, vol. 119, pp. 104979, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104979.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar, “Synthesis of Al2O3−Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids Surf. A Physicochem. Eng. Asp., vol. 388, no. 1–3, pp. 41–48, 2011. DOI: 10.1016/j.colsurfa.2011.08.005.
  • S. P. Anjali Devi and S. Suriya Uma Devi, “Numerical investigation of hydromagnetic hybrid Cu−Al2O3/water nanofluid flow over a permeable stretching sheet with suction,” Int. J. Nonlinear Sci. Numer. Simul., vol. 17, no. 5, pp. 249–257, 2016. DOI: 10.1515/ijnsns-2016-0037.
  • N. C. Roy and I. Pop, “Exact solutions of Stokes’ second problem for hybrid nanofluid flow with a heat source,” Phys. Fluids, vol. 33, no. 6, pp. 063603, 2021. DOI: 10.1063/5.0054576.
  • M. Sheikholeslami and A. J. Chamkha, “Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field,” Numer. Heat Transf. A: Appl., vol. 69, no. 10, pp. 1186–1200, 2016. DOI: 10.1080/10407782.2015.1125709.
  • T. Hayat, M. Imtiaz, A. Alsaedi and M. A. Kutbi, “MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation,” J. Magn. Magn. Mater., vol. 396, pp. 31–37, 2015. DOI: 10.1016/j.jmmm.2015.07.091.
  • Z. H. Khan, O. D. Makinde, M. Hamid, R. U. Haq and W. A. Khan, “Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium,” J. Magn. Magn. Mater., vol. 499, pp. 166241, 2020. DOI: 10.1016/j.jmmm.2019.166241.
  • G. Nandhini and M. K. Shobana, “Role of ferrite nanoparticles in hyperthermia applications,” J. Magn. Magn. Mater., vol. 552, pp. 169236, 2022. DOI: 10.1016/j.jmmm.2022.169236.
  • P. K. Pattnaik, S. R. Mishra, O. Anwar Beg, U. F. Khan and J. C. Umavathi, “Axisymmetric radiative titanium dioxide magnetic nanofluid flow on a stretching cylinder with homogeneous/heterogeneous reactions in Darcy-Forchheimer porous media: intelligent nanocoating simulation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 277, pp. 115589, 2022. DOI: 10.1016/j.mseb.2021.115589.
  • P. M. Patil and B. Goudar, “Single and multiple walled CNTs-TiO2 ternary hybrid nanofluid flow of Williamson fluid in an unsteady combined convective regime: an entropy analysis,” Numer. Heat Transfer A: Appl., vol. 83, pp. 1–22, 2023. DOI: 10.1080/10407782.2023.2174222.
  • Y. Bing Kho, R. Jusoh, M. Zuki Salleh, M. Hisyam Ariff and N. Zainuddin, “Magnetohydrodynamics flow of Ag−TiO2 hybrid nanofluid over a permeable wedge with thermal radiation and viscous dissipation,” J. Magn. Magn. Mater., vol. 565, pp. 170284, 2023. DOI: 10.1016/j.jmmm.2022.170284.
  • K. Hosseinzadeh, S. Roghani, A. Asadi, A. Mogharrebi and D. D. Ganji, “Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor,” HFF, vol. 31, no. 1, pp. 402–417, 2021. DOI: 10.1108/HFF-02-2020-0095.
  • I. Waini, U. Khan, A. Zaib, A. Ishak and I. Pop, “Inspection of TiO2−CoFe2O4 nanoparticles on MHD flow toward a shrinking cylinder with radiative heat transfer,” J. Mol. Liq., vol. 361, pp. 119615, 2022. DOI: 10.1016/j.molliq.2022.119615.
  • T. Thamizharasan and A. S. Reddy, “Pulsating hydromagnetic flow and heat transfer of Jeffrey ferro-nanofluid in a porous channel: a dynamics of blood,” Eur. Phys. J. Spec. Top., vol. 231, no. 6, pp. 1205–1214, 2022. DOI: 10.1140/epjs/s11734-022-00528-3.
  • B. Ali, I. Siddique, A. Shafiq, S. Abdal, I. Khan and A. Khan, “Magnetohydrodynamic mass and heat transport over a stretching sheet in a rotating nanofluid with binary chemical reaction, non-Fourier heat flux, and swimming microorganisms,” Case Stud. Thermal Eng., vol. 28, pp. 101367, 2021. DOI: 10.1016/j.csite.2021.101367.
  • M. R. Khan, S. Mao, W. Deebani, and A. M. A. Elsiddieg, “Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid,” Int. Commun. Heat Mass Transfer, vol. 131, pp. 105843, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105843.
  • S. A. Khan, T. Hayat and A. Alsaedi, “Melting heat in entropy optimized flow of third grade nanomaterials with radiation by a Riga plate,” J. Energy Storage, vol. 45, pp. 103713, 2022. DOI: 10.1016/j.est.2021.103713.
  • P. Rana, S. Gupta, I. Pop and G. Gupta, “Three-dimensional heat transfer of 29 nm CuO−H2O nanoliquid with Joule heating and slip effects over a wedge surface,” Int. Commun. Heat Mass Transfer, vol. 134, pp. 106001, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106001.
  • N. S. Wahid, N. M. Arifin, I. Pop, N. Bachok, and M. E. H. Hafidzuddin, “MHD stagnation-point flow of nanofluid due to a shrinking sheet with melting, viscous dissipation and Joule heating effects,” Alexandria Eng. J., vol. 61, no. 12, pp. 12661–12672, 2022. DOI: 10.1016/j.aej.2022.06.041.
  • M. Hatami, J. Hatami and D. D. Ganji, “Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel,” Comput. Methods Programs Biomed., vol. 113, no. 2, pp. 632–641, 2014. DOI: 10.1016/j.cmpb.2013.11.001.
  • A. Sinha, “MHD flow and heat transfer of a third order fluid in a porous channel with stretching wall: application to hemodynamics,” Alexandria Eng. J., vol. 54, no. 4, pp. 1243–1252, 2015. DOI: 10.1016/j.aej.2015.06.004.
  • T. Hayat, I. Ullah, T. Muhammad and A. Alsaedi, “A revised model for stretched flow of third grade fluid subject to magneto nanoparticles and convective condition,” J. Mol. Liq., vol. 230, pp. 608–615, 2017. DOI: 10.1016/j.molliq.2017.01.074.
  • A. Rasheed, A. Kausar, A. Wahab and T. Akbar, “Stabilized approximation of steady flow of third grade fluid in presence of partial slip,” Results Phys., vol. 7, pp. 3181–3189, 2017. DOI: 10.1016/j.rinp.2017.08.007.
  • B. Sahoo and Y. Do, “Effects of slip on sheet-driven flow and heat transfer of a third grade fluid past a stretching sheet,” Int. Commun. Heat Mass Transfer, vol. 37, no. 8, pp. 1064–1071, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.06.018.
  • M. Zaka Ullah and T. S. Jang, “An efficient numerical scheme for analyzing bioconvection in von-Krmn flow of third-grade nanofluid with motile microorganisms,” Alexandria Eng. J., vol. 59, no. 4, pp. 2739–2752, 2020. DOI: 10.1016/j.aej.2020.05.017.
  • U. Farooq, T. Hayat, A. Alsaedi and S. Liao, “Heat and mass transfer of two-layer flows of third-grade nano-fluids in a vertical channel,” Appl. Math. Comput., vol. 242, pp. 528–540, 2014. DOI: 10.1016/j.amc.2014.05.126.
  • K. Govindarajulu and A. S. Reddy, “Impacts of Joule heating and viscous dissipation on MHD pulsatile flow of third grade nanofluid in a channel,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 236, no. 4, pp. 1544–1555, 2022. DOI: 10.1177/09544089211068245.
  • M. Ben Henda, et al., “Applications of activation energy along with thermal and exponential space-based heat source in bioconvection assessment of magnetized third grade nanofluid over stretched cylinder/sheet,” Case Stud. Thermal Eng., vol. 26, pp. 101043, 2021. DOI: 10.1016/j.csite.2021.101043.
  • K. Govindarajulu and A. Subramanyam Reddy, “Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects,” Phys. Fluids, vol. 34, no. 1, pp. 013105, 2022. DOI: 10.1063/5.0074894.
  • M. Nazeer, et al., “Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel,” Appl. Math. Comput., vol. 420, pp. 126868, 2022. DOI: 10.1016/j.amc.2021.126868.
  • C. Y. Wang, “Pulsatile flow in a porous channel,” J. Appl. Mech. Trans. ASME, vol. 38, no. 2, pp. 553–555, 1971. DOI: 10.1115/1.3408822.
  • G. Radhakrishnamacharya and M. K. Maiti, “Heat transfer to pulsatile flow in a porous channel,” Int. J. Heat Mass Transfer, vol. 20, no. 2, pp. 171–173, 1977. DOI: 10.1016/0017-9310(77)90009-6.
  • A. R. Bestman, “Pulsatile flow in heated porous channel,” Int. J. Heat Mass Transfer, vol. 25, no. 5, pp. 675–682, 1982. DOI: 10.1016/0017-9310(82)90172-7.
  • N. Datta, D. C. Dalal and S. K. Mishra, “Unsteady heat transfer to pulsatile flow of a dusty viscous incompressible fluid in a channel,” Int. J. Heat Mass Transfer, vol. 36, no. 7, pp. 1783–1788, 1993. DOI: 10.1016/S0017-9310(05)80164-4.
  • T. Malathy and S. Srinivas, “Pulsating flow of a hydromagnetic fluid between permeable beds,” Int. Commun. Heat Mass Transfer, vol. 35, no. 5, pp. 681–688, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.12.006.
  • H. M. Shawky, “Pulsatile flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel,” Heat Mass Transfer, vol. 45, no. 10, pp. 1261–1269, 2009. DOI: 10.1007/s00231-009-0502-0.
  • G. Ding, K. S. Choi, B. Ma, T. Kato and W. Yuan, “Transitional pulsatile flows with stenosis in a two-dimensional channel,” Phys. Fluids, vol. 33, no. 3, pp. 034115, 2021. DOI: 10.1063/5.0042753.
  • S. O. Adesanya, L. Rundora and K. F. Thosago, “Numerical evaluation of heat irreversiblity in porous medium combustion of third-grade fluid subjected to Newtonian cooling,” Numer. Heat Transf. A: Appl., vol. 84, pp. 1–15, 2023. DOI: 10.1080/10407782.2023.2171520.
  • J. Tripathi, B. Vasu and O. A. Beg, “Computational simulations of hybrid mediated nano-hemodynamics (Ag – Au/Blood) through an irregular symmetric stenosis,” Comput. Biol. Med., vol. 130, pp. 104213, 2021. DOI: 10.1016/j.compbiomed.2021.104213.
  • A. Kardgar, “Numerical investigation of MHD oscillating power-law non-Newtonian nanofluid flow in an enclosure,” Eur. Phys. J. Plus, vol. 136, no. 1, pp. 1–19, 2021. DOI: 10.1140/epjp/s13360-020-01029-9.
  • M. Hemmat Esfe, M. Bahiraei, A. Torabi and M. Valadkhani, “A critical review on pulsating flow in conventional fluids and nanofluids: thermo-hydraulic characteristics,” Int. Commun. Heat Mass Transfer, vol. 120, pp. 104859, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104859.
  • S. Rajamani and A. S. Reddy, “Effects of Joule heating, thermal radiation on MHD pulsating flow of a couple stress hybrid nanofluid in a permeable channel,” NAMC, vol. 27, no. 4, pp. 1–16, 2022. DOI: 10.15388/namc.2022.27.26741.
  • D. Mythili and R. Sivaraj, “Influence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate,” J. Mol. Liq., vol. 216, pp. 466–475, 2016. DOI: 10.1016/j.molliq.2016.01.072.
  • G. Huminic and A. Huminic, “Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review,” J. Mol. Liq., vol. 302, pp. 112533, 2020. DOI: 10.1016/j.molliq.2020.112533.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer, vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • F. Bibi, T. Hayat, S. Farooq, A. A. Khan and A. Alsaedi, “Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity,” J. Thermal Anal. Calorim., vol. 143, no. 1, pp. 363–375, 2021. DOI: 10.1007/s10973-019-09125-4.
  • Y.-M. Chu, et al., “Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: a Buongiorno model analysis,” Int. Commun. Heat Mass Transfer, vol. 118, pp. 104893, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104893.
  • S. Ahmad, S. Nadeem and N. Ullah, “Entropy generation and temperature-dependent viscosity in the study of SWCNT-MWCNT hybrid nanofluid,” Appl. Nanosci., vol. 10, no. 12, pp. 5107–5119, 2020. DOI: 10.1007/s13204-020-01306-0.
  • K. Loganathan, K. Mohana, M. Mohanraj, P. Sakthivel and S. Rajan, “Impact of third-grade nanofluid flow across a convective surface in the presence of inclined Lorentz force: an approach to entropy optimization,” J. Thermal Anal. Calorim., vol. 144, no. 5, pp. 1935–1947, 2021. DOI: 10.1007/s10973-020-09751-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.