33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation on heat transfer characteristics of S−CO2 in equal-section inclined tubes

, , , , &
Received 13 Feb 2023, Accepted 04 Sep 2023, Published online: 13 Sep 2023

References

  • M. C. Chen, et al., “"Supercritical CO2 Brayton cycle: intelligent construction method and case study,”" Energy Convers. Manage, vol. 246, pp. 114662, Oct. 2021. DOI: 10.1016/j.enconman.2021.114662.
  • J. L. Xu, E. H. Sun, M. J. Li, H. Liu, and B. G. Zhu, “Key issues and solution strategies for supercritical carbon dioxide coal fired power plant,” Energy, vol. 157, pp. 227–246, Aug. 2018. DOI: 10.1016/j.energy.2018.05.162.
  • Y. X. Liu, Y. Y. Zhao, Q. C. Yang, G. B. Liu, and L. S. Li, “"Thermodynamic comparison of CO2 power cycles and their compression processes,” Case Stud. Therm. Eng, vol. 21, pp. 100712, Oct. 2020. DOI: 10.1016/j.csite.2020.100712.
  • S. I. Schoffer, S. A. Klein, P. V. Aravind, and R. Pecnik, “A solid oxide fuel cell- supercritical carbon dioxide Brayton cycle hybrid system,” Appl. Energy, vol. 283, pp. 115748, Feb. 2021. DOI: 10.1016/j.apenergy.2020.115748.
  • J. Zhou, et al., “" Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant,” Energy Convers. Manage, vol. 173, no. 1, pp. 348–358, Oct. 2018. DOI: 10.1016/j.enconman.2018.07.096.
  • M. Z. Pan, et al., “" Theoretical analysis and comparison on supercritical CO2 based combined cycles for waste heat recovery of engine,” Energy Convers. Manage, vol. 219, no. 1, pp. 113049, Sept. 2020. DOI: 10.1016/j.enconman.2020.113049.
  • B. B. Yu, D. D. Wang, X. Xiang, H. H. Yu, and J. P. Chen, “"Performance analysis of a trans-critical CO2 air conditioning system for electric vehicle,” J. Shanghai Jiaotong University, vol. 53, no. 7, pp. 866–872, Aug. 2019. DOI: 10.16183/j.cnki.jsjtu.2019.07.014.
  • M. J. Li, H. H. Zhu, J. Q. Guo, K. Wang, and W. Q. Tao, “"The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries,” Appl. Therm. Eng., vol. 126, no. 5, pp. 255–275, Nov. 2017. DOI: 10.1016/j.applthermaleng.2017.07.173.
  • S. J. Zhang, X. X. Xu, C. Liu, and C. B. Dang, “"A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion,” Appl. Energy, vol. 269, no. 1, pp. 114962, Jul. 2020. DOI: 10.1016/j.apenergy.2020.114962.
  • B. G. Zhu, et al., “" Flow and heat transfer characteristics of supercritical CO2 in vertical tube,” Ciesc J., vol. 70, no. 4, pp. 1282–1290, Apr. 2019. DOI: 10.11949/j.issn.0438-1157.20180695.
  • L. Zhang, B. G. Zhu, X. M. Wu, and J. L. Xu, [J.]., “"Heat transfer characteristics of supercritical pressure CO2 in a Vertical Smooth Tube,” Proc. CSEE, vol. 39, no. 15, pp. 4487–4497, 2019. vol15Mo2019 DOI: 10.13334/j.0258-8013.pcsee.181015.
  • Q. Zhang, H. X. Li, J. L. Liu, X. L. Lei, and C. Wu, “" Numerical investigation of different heat transfer behaviors of supercritical CO2 in a large vertical tube,” Int. J. Heat Mass Transf, vol. 147, pp. 118944, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118944.
  • S. Pandey, X. Chu, and E. Laurien, “Investigation of in-tube cooling of carbon dioxide at supercritical pressure by means of direct numerical simulation,” Int. J. Heat Mass Transf, vol. 114, pp. 944–957, Nov. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.089.
  • S. H. Liu, Y. P. Huang, J. F. Wang, and L. K. H. Leung, “Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures,” Int. J. Heat Mass Transf, vol. 117, pp. 595–606, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.037.
  • Y. Y. Bae, H. Y. Kim, and D. J. Kang, “" Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1295–1308, Nov. 2010. DOI: 10.1016/j.expthermflusci.2010.06.001.
  • Z. X. Du, W. S. Lin, and J. M. Gu, “" Numerical Investigation for Heat Transfer of Supercritical CO2 Cooled in a Vertical Circular Tube,” Heat Transf. Eng, vol. 33, no. 10, pp. 905–911, Mar. 2012. DOI: 10.1080/01457632.2012.654452.
  • A. Taklifi, M. A. Akhavan-Behabadi, P. Hanafizadeh and A. Aliabadi, “Effect of heat and mass flux on heat transfer characteristics of water forced convection inside vertical and inclined rifled tubes,” Appl. Therm. Eng, vol. 117, no. 5, pp. 169–177, May. 2017. DOI: 10.1016/j.applthermaleng.2017.02.015.
  • A. Taklifi, P. Hanafizadeh, M. A. A. Behabadi, and A. Aliabadi, “Experimental investigation on heat transfer and pressure drop of supercritical water flows in an inclined rifled tube,” J. Supercrit Fluids, vol. 107, pp. 209–218, Jan. 2016. DOI: 10.1016/j.supflu.2015.09.011.
  • X. Zhang, Z. H. Liu, Q. C. Bi, H. C. Lv, and D. Yang, “Heat transfer and resistance characteristics of water in an inclined internally ribbed tube under supercritical pressure conditions,” J. Xi’an Jiaotong Univ, vol. 54, no. 12, pp. 106–115, Dec. 2020. DOI: 10.7652/xjtuxb202012013.
  • Y. M. Guo, “Study on heat transfer characteristics of supercritical water in inclined and vertical internally ribbed tubes,” J. Taiyuan Univ., vol. 35, no. 3, pp. 49–55, 2017.
  • X. L. Lei, H. X. Li, S. Q. Yu, and D. L. Ren, "“simulation on heterogeneous heat transfer in water at supercritical pressures in inclined upward tubes,” Chin. J. Comput. Phys, vol. 27, no. 2, pp. 217–228, 2010. DOI: 10.1145/1836845.1836984.
  • F. Yin, T. K. Chen, and H. X. Li, “An investigation on heat transfer to supercritical water in inclined upward smooth tubes,” Heat Transf. Eng., vol. 27, no. 9, pp. 44–52, Oct. 2006. DOI: 10.1080/01457630600846018.
  • M. Zhao, H. Y. Gu, and X. Cheng, “Experimental study on heat transfer of supercritical water flowing downward in circular tubes,” Ann. Nucl. Energy, vol. 63, pp. 339–349, Jan. 2014. DOI: 10.1016/j.anucene.2013.07.003.
  • S. Y. Wang, Y. F. Xin, D. Yang, L. Dong, and X. H. Zhou, “Experimental and numerical study on the heat transfer to supercritical water in an inclined smooth tube,” Int. J. Therm. Sci., vol. 170, pp. 107111, Dec. 2021. DOI: 10.1016/j.ijthermalsci.2021.107111.
  • S. Y. Wang, Y. F. Xin, T. T. Niu, Y. L. Li, and D. Yang, “Numerical study of heat transfer to supercritical water in an inclined tube,” Heat Transf. Eng., vol. 43, no. 17, pp. 1464–1482, Oct. 2022. DOI: 10.1080/01457632.2021.1976005.
  • J. Y. Wang, et al., “Computational investigations on convective flow and heat transfer of turbulent supercritical CO2 cooled in large inclined tubes,” Appl. Therm. Eng., vol. 159, pp. 113922, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.113922.
  • C. Y. Yang, J. L. Xu, X. D. Wang, and W. Zhang, “"Effect of tube inclination angel on heat transfer characteristics of supercritical CO2 in Tube,” At. Energy Sci. Technol., vol. 47, no. 9, pp. 1522–1528, Sept. 2013. DOI: 10.7538/yzk.2013.47.09.1522.
  • C. Y. Yang, J. L. Xu, X. D. Wang, and W. Zhang, “Numerical simulation of convective heat transfer for supercritical CO2 in inclined tubes,” Therm. Power Gener., vol. 42, no. 1, pp. 26–35, 2013. DOI: 10.3969/j.issn.1002-3364.2013.01.026.
  • M. Yang, “Numerical study on the heat transfer of carbon dioxide in horizontal straight tubes under supercritical pressure,” Plos One, vol. 11, no. 7, pp. e0159602, Jul. 2016. DOI: 10.1371/journal.pone.0159602.
  • C. B. Dang and E. Hihara, “In-tube cooling heat transfer of supercritical carbon dioxide. Part 2. Comparison of numerical calculation with different turbulence models,” Int. J. Refrig., vol. 27, no. 7, pp. 748–760, Nov. 2004. DOI: 10.1016/j.ijrefrig.2004.04.017.
  • S. He, W. S. Kim, and J. H. Bae, “Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube,” Int. J. Heat Mass Transf., vol. 51, no. 19–20, pp. 4659–4675, Sep. 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.12.028.
  • Z. X. Du, W. S. Lin, and A. Z. Gu, “"Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube,” J. Supercrit Fluids, vol. 55, no. 1, pp. 116–121, Nov. 2010. DOI: 10.1016/j.supflu.2010.05.023.
  • M. Sharabi, W. Ambrosini, S. He, and J. D. Jackson, “Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels,” Ann. Nucl. Energy, vol. 35, no. 6, pp. 993–1005, Jun. 2008. DOI: 10.1016/j.anucene.2007.11.006.
  • K. W. Seo, M. H. Kim, M. H. Anderson, and M. L. Corradini, “Heat transfer in a supercritical fluid: classification of heat transfer regimes,” Nucl. Technol., vol. 154, no. 3, pp. 335–349, Apr. 2006. DOI: 10.13182/NT06-A3738.
  • H. Versteeg and H. K. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. New York: Wiley, 1995.
  • F. R. Menter, “Two-equation Eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, Aug. 1994. DOI: 10.2514/3.12149.
  • D. Y. Peng and D. B. Robinson, “A new two-constant equation of state,” Ind. Eng. Chem. Fund, vol. 15, no. 1, pp. 59–64, 1976. DOI: 10.1021/i160057a011.
  • D. T. Banuti, “Crossing the widom-line-supercritical pseudo-boiling e,” J. Supercrit Fluids, vol. 98, no. 3, pp. 12–16, Jan. 2015. DOI: 10.1016/j.supflu.2014.12.019.
  • G. A. Adebiyi and W. B. Hall, “Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe,” Int. J. Heat Mass Transf, vol. 19, no. 7, pp. 715–720, Jul. 1976. DOI: 10.1016/0017-9310(76)90123-X.
  • J. R. Stark and T. L. Bergman, “Prediction of convection from a finned cylinder in cross flow using direct simulation, turbulence modeling, and correlation-based methods,” Numer. Heat TR A-Appl., vol. 71, no. 6, pp. 591–608, Mar. 2017. DOI: 10.1080/10407782.2016.1277929.
  • B. Zhang, J. Q. Shan, and J. Jiang, “ Numerical analysis of supercritical water heat transfer in horizontal circular tube,” Prog. Nucl. Energy, vol. 52, no. 7, pp. 678–684, Sep. 2010. DOI: 10.1016/j.pnucene.2010.03.006.
  • S. Y. Wang, D. Yang, Y. J. Zhao, and M. F. Qu, “Heat transfer characteristics of spiral water wall tube in a 1000 MW ultra-supercritical boiler with wide operating load mode,” Appl. Therm. Eng., vol. 130, no. 5, pp. 501–514, Feb. 2018. DOI: 10.1016/j.applthermaleng.2017.10.114.
  • X. Y. Pu and Z. H. Li, “Analysis of Buoyancy effect in heat transfer to supercritical fluids in horizontal flow and evaluation of the criterion,” J. Chin. Soc. Power Eng., vol. 41, no. 6, pp. 474–480, 2021. DOI: 10.19805/j.cnki.jcspe.2021.06.007.
  • S. J. Yin, C. S. Yan, J. L. Xu, and H. Liu, “"Numerical analysis on heat transfer characteristics of supercritical CO2 cooled in a horizontal tube,” Proc. Chin. Soc. Elect. Eng, vol. 41, no. 1, pp. 247–253, Feb. 2021. DOI: 10.13334/j.0258-8013.pcsee.202299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.