88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A numerical model for convective-condensation heat transfer of flue gas and its application on fin efficiency calculation

, , , , , , & show all
Received 29 Jun 2023, Accepted 09 Sep 2023, Published online: 19 Sep 2023

References

  • P. Kapustenko, J. J. Klemes, O. Arsenyeva and L. Tovazhnyanskyy, “PHE (plate heat exchanger) for condensing duties: recent advances and future prospects,” Energies, vol. 16, no. 1, pp. 524, 2023. DOI: 10.3390/en16010524.
  • P. Raczka, “A pilot-scale condensing waste heat exchanger,” J. Power Technol., vol. 100, no. 3, pp. 263–271, 2020.
  • M. Kovacevic, et al., “Increasing the efficiency by retrofitting gas boilers into a condensing heat exchanger,” Energy Sources Part B., vol. 12, no. 5, pp. 470–479, 2017. DOI: 10.1080/15567249.2016.1188182.
  • D. Che, Y. Da and Z. Zhuang, “Heat and mass transfer characteristics of simulated high moisture flue gases,” Heat Mass Transf., vol. 41, no. 3, pp. 250–256, 2004. DOI: 10.1007/s00231-004-0505-9.
  • A. P. Colburn and O. A. Hougen, “Design of cooler condensers for mixtures of vapors with noncondensing gases,” Ind. Eng. Chem., vol. 26, no. 11, pp. 1178–1182, 1934. DOI: 10.1021/ie50299a011.
  • A. C. Bannwart and A. Bontemps, “Condensation of a vapor with incondensables - an improved gas-phase film model accounting for the effect of mass-transfer on film thickness,” Int. J. Heat Mass Transf., vol. 33, no. 7, pp. 1465–1474, 1990. DOI: 10.1016/0017-9310(90)90043-T.
  • H. J. H. Brouwers, “Film models for transport phenomena with fog formation: with application to plastic heat exchangers and condensers,” Ph.D. dissertation, Dept. Philos., Technical University, Eindhoven, Netherlands, 1990.
  • H. J. H. Brouwers and A. K. Chesters, “Film models for transport phenomena with fog formation - the classical film model,” Int. J. Heat. Mass Transf., vol. 35, no. 1, pp. 1–11, 1992. DOI: 10.1016/0017-9310(92)90003-B.
  • H. J. H. Brouwers and C. W. M. VanderGeld, “Heat transfer, condensation and fog formation in crossflow plastic heat exchangers,” Int. J. Heat Mass Transf., vol. 39, no. 2, pp. 391–405, 1996. DOI: 10.1016/0017-9310(95)00113-N.
  • J. Sun, Y. He and W. Tao, “A molecular dynamics study on heat and mass transfer in condensation over smooth/rough surface,” Int. J. Numer. Methods Heat Fluid Flow., vol. 21, no. 2, pp. 244–267, 2011. DOI: 10.1108/09615531111105425.
  • A. M. Jacobi, S. A. Idem and V. W. Goldschmidt, “Predicting the performance of multistage heat-exchangers,” Heat Transf. Eng., vol. 14, no. 1, pp. 62–70, 1993. DOI: 10.1080/01457639308939795.
  • W. Yu, S. U. S. Choi, D. M. France and M. W. Wambsganss, “Single-sided steam condensing inside a rectangular horizontal channel,” Int. J. Heat Mass Transf., vol. 45, no. 18, pp. 3715–3724, 2002. DOI: 10.1016/S0017-9310(02)00087-X.
  • S. C. Seok, et al., “Effect of surface etching on condensing heat transfer,” J. Mech. Sci. Technol., vol. 30, no. 2, pp. 871–877, 2016. DOI: 10.1007/s12206-016-0141-6.
  • Y. Liang, D. Che and Y. Kang, “Effect of vapor condensation on forced convection heat transfer of moistened gas,” Heat Mass Transfer., vol. 43, no. 7, pp. 677–686, 2007. DOI: 10.1007/s00231-006-0148-0.
  • M. Mohanraj, S. Jayaraj and C. Muraleedharan, “Applications of artificial neural networks for thermal analysis of heat exchangers – a review,” Int. J. Therm. Sci., vol. 90, pp. 150–172, 2015. DOI: 10.1016/j.ijthermalsci.2014.11.030.
  • W. Cao and X. You, “The prediction of heat efficiency and pollutant emission of non-rated loaded condensing heat exchangers,” Clean Techn. Environ. Policy., vol. 20, no. 10, pp. 2299–2310, 2018. DOI: 10.1007/s10098-018-1606-3.
  • C. Wang and C. Tu, “Effects of non-condensable gas on laminar film condensation in a vertical tube,” Int. J. Heat Mass Transf., vol. 31, no. 11, pp. 2339–2345, 1988. DOI: 10.1016/0017-9310(88)90165-2.
  • G. Desrayaud and G. Lauriat, “Heat and mass transfer analogy for condensation of humid air in a vertical channel,” Heat Mass Transf., vol. 37, no. 1, pp. 67–76, 2001. DOI: 10.1007/s002310000133.
  • E. P. Volchkov, V. V. Terekhov and V. I. Terekhov, “A numerical study of boundary-layer heat and mass transfer in a forced flow of humid air with surface steam condensation,” Int. J. Heat Mass Transf., vol. 47, no. 6–7, pp. 1473–1481, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.09.018.
  • A. Chiapolino, P. Boivin and R. Saurel, “A simple phase transition relaxation solver for liquid-vapor flows,” Numer. Methods Fluids., vol. 83, no. 7, pp. 583–605, 2017. DOI: 10.1002/fld.4282.
  • X. Wu and D. Che, “A numerical study of high moisture flue gas in tube banks,” Numer. Heat Transf., Part A., vol. 65, no. 4, pp. 357–377, 2014. DOI: 10.1080/10407782.2013.831673.
  • Q. Liu, J. Yang, W. Qian, H. Gu and M. Liu, “Numerical study of the forced convective condensation on a short vertical plate,” Heat Transf. Eng., vol. 38, no. 1, pp. 103–121, 2017. DOI: 10.1080/01457632.2016.1156417.
  • R. Naik, A. Narain and S. Mitra, “Steady and unsteady simulations for annular internal condensing flows, part I: algorithm and its accuracy,” Numer. Heat Transf., Part B., vol. 69, no. 6, pp. 473–494, 2016. DOI: 10.1080/10407790.2016.1138802.
  • R. Naik and A. Narain, “Steady and unsteady simulations for annular internal condensing flows, part II: instability and flow regime transitions,” Numer. Heat Transf., Part B., vol. 69, no. 6, pp. 495–510, 2016. DOI: 10.1080/10407790.2016.1138804.
  • H. Nemati and M. Moradaghay, “Parametric study of natural convection over horizontal annular finned tube,” J. Cent. South Univ., vol. 26, no. 8, pp. 2077–2087, 2019. DOI: 10.1007/s11771-019-4155-y.
  • K. A. Gardner, “Efficiency of extended surface,” Trans. Am. Soc. Mech. Eng., vol. 67, no. 8, pp. 621–628, 1945. DOI: 10.1115/1.4018343.
  • D. Y. Kuan, R. Aris and H. T. Davis, “Estimation of fin efficiencies of regular tubes arrayed in circumferential fins,” Int. J. Heat Mass Transf., vol. 27, no. 1, pp. 148–151, 1984. DOI: 10.1016/0017-9310(84)90249-7.
  • H. Zabronsky, “Temperature distribution and efficiency of a heat exchanger using square fins on round tubes,”J. Appl. Mech., vol. 22, no. 1, pp. 119–122, 1955. DOI: 10.1115/1.4010981.
  • E. C. Rosman, P. Carajilescov and F. E. M. Saboya, “Performance of one- and two-row tube and plate fin heat exchangers,” J. Heat Transf., vol. 106, no. 3, pp. 627–632, 1984. DOI: 10.1115/1.3246726.
  • K. Song, Y. Wang, Q. Zhang, L. Wang and Y. Liu, “Numerical study of the fin efficiency and a modified fin efficiency formula for flat tube bank fin heat exchanger,” Int. J. Heat Mass Transf., vol. 54, no. 11–12, pp. 2661–2672, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.040.
  • B. Ameel, et al., “On fin efficiency in interrupted fin and tube heat exchangers,” Int. J. Heat Mass Transf., vol. 60, pp. 557–566, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.028.
  • M. H. Sharqawy, A. Moinuddin and S. M. Zubair, “Heat and mass transfer from annular fins of different cross-sectional area. Part I. Temperature distribution and fin efficiency,” Int. J. Refrig., vol. 35, no. 2, pp. 365–376, 2012. DOI: 10.1016/j.ijrefrig.2011.11.004.
  • A. Moinuddin, M. H. Sharqawy and S. M. Zubair, “Heat and mass transfer from annular fins of different cross sectional area. Part II. Optimal dimensions of fins,” Int. J. Refrig., vol. 35, no. 2, pp. 377–385, 2012. DOI: 10.1016/j.ijrefrig.2011.11.003.
  • M. H. Sharqawy and S. M. Zubair, “Efficiency and optimization of an annular fin with combined heat and mass transfer – An analytical solution,” Int. J. Refrig., vol. 30, no. 5, pp. 751–757, 2007. DOI: 10.1016/j.ijrefrig.2006.12.008.
  • M. Ben Slimene, S. Poncet, J. Bessrour and F. Kallel, “Numerical investigation of the flow dynamics and heat transfer in a rectangular shell-and-tube heat exchanger,” Case Stud. Therm. Eng., vol. 32, pp. 101873, 2022. DOI: 10.1016/j.csite.2022.101873.
  • V. Patel, R. Patel, N. Trapasia and V. Patel, “CFD simulation of dehumidification of air in humidification-dehumidification based water desalination system,” Iran J. Sci. Technol. Trans. Mech. Eng., vol. 46, no. 2, pp. 449–463, 2022. DOI: 10.1007/s40997-021-00454-0.
  • W. Li, X. Meng, H. Bian and M. Ding, “Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube,” Nucl. Sci. Tech., vol. 33, no. 8, pp. 100, 2022. DOI: 10.1007/s41365-022-01090-2.
  • J. Wang, Y. Tao and J. Liu, “Numerical study on acid condensation and corrosion characteristics of three-dimensional finned tube surface,” Chem. Eng. Sci., vol. 238, pp. 116600, 2021. DOI: 10.1016/j.ces.2021.116600.
  • A. Adam, D. Han, W. He, M. Amidpour and H. Zhong, “Numerical investigation of the heat and mass transfer process within a cross-flow indirect evaporative cooling system for hot and humid climates,” J. Build. Eng., vol. 45, pp. 103499, 2022. DOI: 10.1016/j.jobe.2021.103499.
  • M. Ghosh, “Effect of flue gas constituents on boiler tube failure of a captive power plant,” Eng. Fail. Anal., vol. 151, pp. 107416, 2023. DOI: 10.1016/j.engfailanal.2023.107416.
  • H. Han, Y. He and W. Tao, “A numerical study of the deposition characteristics of sulfuric acid vapor on heat exchanger surfaces,” Chem. Eng. Sci., vol. 101, pp. 620–630, 2013. DOI: 10.1016/j.ces.2013.07.024.
  • K. Jeong, “Condensation of water vapor and sulfuric acid in boiler flue gas,” Ph.D. dissertation, Dept. Philos., Lehigh University, Bethlehem., PA, 2009.
  • Compiling Group of Standard Method of Thermodynamic Calculation for Boiler Unit. Standard Method of Thermodynamic Calculation for Boiler Unit. Beijing, China: Machinery Industy Press, 1973.
  • H. Wei, T. Cong, C. Jiang, W. Zhou and B. Bai, “Heat transfer enhancement of partially serrated twisted finned tube bank,” Heat Transf. Eng., 2023 (online). DOI: 10.1080/01457632.2022.2164682.
  • A. Atia, S. Bouabdallah, B. Ghernaout, M. Teggar and M. Arici, “Natural convection heat transfer in a three-dimensional enclosure under the effect of heated pin-fins of various shapes,” Numer. Heat Transf., Part A., 2023 (online). DOI: 10.1080/10407782.2023.2242580.
  • G. Sowmya, F. Gamaoun, A. Abdulrahman, R. S. Varun Kumar and B. C. Prasannakumara, “Significance of thermal stress in a convective-radiative annular fin with magnetic field and heat generation: application of DTM and MRPSM,” Propul. Power Res., vol. 11, no. 4, pp. 527–543, 2022. DOI: 10.1016/j.jppr.2022.11.001.
  • M. Torabi and A. Aziz, “Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity,” Int. Commun. Heat Mass Transf., vol. 39, no. 8, pp. 1018–1029, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.07.007.
  • C. Liao, L. Zeng, J. Long and A. Yongga, “Research on anti-frosting potential of air source heat pump evaporator in hot-summer and cold-winter zone,” Appl. Therm. Eng., vol. 220, pp. 119684, 2023. DOI: 10.1016/j.applthermaleng.2022.119684.
  • B. Kundu and S.-J. Yook, “Analytical model for extremum analysis of moistened fins involving all nonlinear energy exchange processes,” Case Stud. Therm. Eng., vol. 41, pp. 102691, 2023. DOI: 10.1016/j.csite.2022.102691.
  • Y. Sun, J. Ma, B. Li and Z. Guo, “Predication of nonlinear heat transfer in a convective-radiative fin with temperature-dependent properties by the collocation spectral method,” Numer. Heat Transf., Part B., vol. 69, no. 1, pp. 68–83, 2016. DOI: 10.1080/10407782.2015.1081043.
  • U. Bajpai, V. K. Gaba and S. Bhowmick, “A parametric study of functionally graded variable thickness longitudinal fin under fully wet condition,” in Innovative Product Design and Intelligent Manufacturing Systems, B. Deepak, D. R. K. Parhi, and P. C. Jena, Eds., Singapore: Springer Singapore, 2020, pp. 113–121.
  • X. Wang, X. Niu, F. Bai, P. Zhang, S. Chen and J. Zhang, “Design and optimization of a helix finned tube heat exchanger for 2 k superfluid helium vertical test stand,” J. Therm. Sci. Eng. Appl., vol. 15, no. 6, pp. 061007, 2023. DOI: 10.1115/1.4057066.
  • S. A. Payambarpour, M. A. Nazari, M. H. Ahmadi and A. J. Chamkha, “Effect of partially wet-surface condition on the performance of fin-tube heat exchanger,” HFF, vol. 29, no. 10, pp. 3938–3958, 2019. DOI: 10.1108/HFF-07-2018-0362.
  • W. Pirompugd, C. Wang and S. Wongwises, “Correlations for wet surface ratio of fin-and-tube heat exchangers,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 568–573, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.