40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stagnation point flow of magnetized Cu–Cuo–water nano liquid via a porous dissipative stretching surface: A theoretical investigation

ORCID Icon, , ORCID Icon & ORCID Icon
Received 31 May 2023, Accepted 28 Sep 2023, Published online: 14 Oct 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, Vol. 66, D. A. Siginer and H. P. Wang, Eds. New York, NY, USA: ASME, 1995, pp. 99–105.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. Oxford, UK: Clarendon Press, 1904.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component Systems,” Ind. Eng. Chem. Fund, vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • O. A. Bég, D. S. Espinoza, A. Kadir, MD. Shamshuddin, and A. Sohail, “Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles,” Appl. Nanosci., vol. 8, no. 5, pp. 1069–1090, 2018. DOI: 10.1007/s13204-018-0746-4.
  • O. Anwar Bég, S. Kuharat, M. Ferdows, M. Das, A. Kadir, and MD. Shamshuddin, “Modeling magnetic nanopolymer flow with induction and nanoparticle solid volume fraction effects: solar magnetic nanopolymer fabrication simulation,” Proc. IMchE Part N: J. Nanomat. Nanoeng. Nanosyst., vol. 233, pp. 27–45, 2019.
  • A. Dawar, Z. Shah, W. Khan, M. Idrees, and S. Islam, “Unsteady squeezing flow of magnetohydrodynamic carbon nanotube nanofluid in rotating channels with entropy generation and viscous dissipation,” Adv. Mech. Eng., vol. 11, no. 1, pp. 168781401882310, 2019. DOI: 10.1177/1687814018823100.
  • MD. Shamshuddin, S. R. Mishra, O. Anwar Beg, and A. Kadir, “A domain decomposition method simulation of von Kármán swirling bioconvection nanofluid flow,” J. Cent. South Univ., vol. 26, no. 10, pp. 2797–2813, 2019. DOI: 10.1007/s11771-019-4214-4.
  • S. Ullah, I. Ullah, and A. Ali, “Soret and Dufour effects on dissipative Jeffrey nanofluid flow over a curved surface with nonlinear slip, activation energy and entropy generation,” Waves Random Complex Media, pp. 1–23, 2023. DOI: 10.1080/17455030.2022.2164380.
  • Z. Shah, L. B. McCash, A. Dawar, and E. Bonyah, “Entropy optimization in Darcy–Forchheimer MHD flow of water-based copper and silver nanofluids with Joule heating and viscous dissipation effects,” AIP Adv., vol. 10, no. 6, pp. e065137, 2020. DOI: 10.1063/5.0014952.
  • N. A. Alreshidi, Z. Shah, A. Dawar, P. Kumam, M. Shutaywi, and W. Watthayu, “Brownian motion and thermophoresis effects on MHD three dimensional nanofluid flow with slip conditions and Joule dissipation due to porous rotating disk,” Molecules, vol. 25, no. 3, pp. 729, 2020. DOI: 10.3390/molecules25030729.
  • K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder,” Dinglers Polytech. J., vol. 326, pp. 321–324, 1911.
  • C. Y. Wang, “Stagnation flow towards a shrinking sheet,” Int. J. Non. Linear. Mech., vol. 43, no. 5, pp. 377–382, 2008. DOI: 10.1016/j.ijnonlinmec.2007.12.021.
  • R. Nazar, N. Amin, D. Filip, and I. Pop, “Stagnation point flow of a micropolar fluid towards a stretching sheet,” Int. J. Nonlinear Mech., vol. 39, no. 7, pp. 1227–1235, 2004. DOI: 10.1016/j.ijnonlinmec.2003.08.007.
  • N. Abbas, S. Saleem, S. Nadeem, A. A. Alderremy, and A. U. Khan, “On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip,” Res. Phys., vol. 9, pp. 1224–1232, 2018. DOI: 10.1016/j.rinp.2018.04.017.
  • A. A. A. Arani and H. Aberoumand, “Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis,” Powder Technol., vol. 380, pp. 152–163, 2021. DOI: 10.1016/j.powtec.2020.11.043.
  • O. A. Bég, R. Bhargava, S. Sharma, T. A. Bég, MD. Shamshuddin, and A. Kadir, “Numerical solutions for axi-symmetric non-Newtonian stagnation enrobing flow, heat and mass transfer with applications to cylindrical pipe coating dynamics,” Comput. Thermal Sci., vol. 12, no. 1, pp. 79–97, 2020. DOI: 10.1615/ComputThermalScien.2020026228.
  • M. Sunder Ram, MD. Shamshuddin, and K. Spandana, “Numerical simulation of stagnation point flow in magneto micropolar fluid over a stretchable surface under influence of activation energy and bilateral reaction,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105679, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105679.
  • N. Vijay and K. Sharma, “Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation,” Int. Commun. Heat Mass Transf., vol. 141, pp. 106545, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106545.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys. (ZAMP), vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • C. Y. Wang, “The three-dimensional flow due to a stretching flat surface,” Phys. Fluids, vol. 27, no. 8, pp. 1915–1917, 1984. DOI: 10.1063/1.864868.
  • T. Hayat, I. Ullah, T. Muhammad, and A. Alsaedi, “Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface,” J. Mol. Liq., vol. 220, pp. 1004–1012, 2016. DOI: 10.1016/j.molliq.2016.05.024.
  • I. Ullah, “Activation energy with exothermic/endothermic reaction and Coriolis force effects on magnetized nanomaterials flow through Darcy–Forchheimer porous space with variable features,” Waves Random Complex Media, pp. 1–14, 2022. DOI: 10.1080/17455030.2021.2023779.
  • I. Ullah, “Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminium alloy nanoparticles,” Int. Commun. Heat Mass Transf., vol. 132, pp. 105920, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105920.
  • A. Rehman, S. Nadeem, and M. Y. Malik, “Boundary layer stagnation-point flow of a third-grade fluid over an exponentially stretching sheet,” Braz. J. Chem. Eng, vol. 30, no. 3, pp. 611–618, 2013. DOI: 10.1590/S0104-66322013000300018.
  • R. Cortell, “MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption,” Energy, vol. 74, pp. 896–905, 2014. DOI: 10.1016/j.energy.2014.07.069.
  • M. Sunder Ram, K. Spandana, and MD. Shamshuddin, “Numerical simulations and modelling of steady convective Hiemenz flow of a dissipative micropolar fluid through stretching sheet,” Int. J. Ambient Energy, vol. 44, no. 1, pp. 1948–1958, 2023. DOI: 10.1080/01430750.2023.2199030.
  • A. K. M. Muktadir, MD. Shamshuddin, M. Ferdows, and M. R. Eid, “Heat and mass transport through bi-axial extending sheet with anisotropic slip and Entropy/Bejan on the 3D boundary layer hybrid nanofluid,” Proc. IMechE – Part E: J. Proc. Mech. Eng., 2022. DOI: 10.1177/09544089221147394.
  • I. Ullah, S. Shukat, A. Albakri, H. Khan, A. M. Galal, and W. Jamshed, “Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel,” Int. J. Mod. Phys. B, vol. 37, no. 24, pp. 2350237, 2023. DOI: 10.1142/S0217979223502375.
  • P. P. Humane, V. S. Patil, MD. Shamshuddin, G. R. Rajput, and A. B. Patil, “Role of bioconvection on the dynamics of chemically active Casson nanofluid flowing via an inclined porous stretching sheet with convective conditions,” Int. J. Mod. Simul., 2023. DOI: 10/1080/02286203.2022.2164156.
  • MD. Shamshuddin, F. Shahzad, W. Jamshed, O. Anwar Bég, M. R. Eid, and T. A. Bég, “Thermo-solutal stratification and chemical reaction effects on radiative magnetized nanofluid flow along an exponentially stretching sensor plate: computational analysis,” J. Magn. Magn. Mater., vol. 565, pp. 170286, 2023. DOI: 10.1016/j.jmmm.2022.170286.
  • M. Bilal, I. Ullah, M. M. Alam, W. Weera, and A. M. Gala, “Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge,” Symmetry, vol. 14, no. 11, pp. 2419, 2022. DOI: 10.3390/sym14112419.
  • M. Bilal, I. Ullah, M. M. Alam, S. I. Shah, and S. M. Eldin, “Energy transfer in Carreau Yasuda Liquid Influenced by engine oil with magnetic dipole using try-hybrid nanoparticles,” Sci. Rep., vol. 13, no. 1, pp. 5432, 2023. DOI: 10.1038/s41598-023-32052-2.
  • S. E. Ghasemi, S. Mohsenian, S. Gouran, and A. Zolfagharian, “A novel spectral relaxation approach for nanofluid flow past a stretching surface in presence of magnetic field and nonlinear radiation,” Res. Phys., vol. 32, pp. 105141, 2022. DOI: 10.1016/j.rinp.2021.105141.
  • D. Pal and G. Mandal, “Influence of thermal radiation on mixed convection heat and mass transfer stagnation-point flow in nanofluids over stretching/shrinking sheet in a porous medium with chemical reaction,” Nucl. Eng. Design, vol. 273, pp. 644–652, 2014. DOI: 10.1016/j.nucengdes.2014.01.032.
  • M. D. Shamshuddin, S. O. Salawu, O. A. Beg, A. Kadir, and T. A. Beg, “Computation of reactive mixed convection radiative viscoelastic nanofluid thermo-solutal transport from a stretching sheet with Joule heating,” Int. J. Mod. Simul., vol. 42, no. 6, pp. 1005–1029, 2022. DOI: 10.1080/02286203.2021.2012635.
  • MD. Shamshuddin, A. Abderrahmane, A. Koulali, M. R. Eid, F. Shahzad, and W. Jamshed, “Thermal and solutal performance of Cu/Cuo nanoparticles on a non-linear radially stretching surface with heat source/sink and varying chemical reaction effects,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105710, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105710.
  • W. A. Khan and I. Pop, “Boundary layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 11-12, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • S. E. Ghasemi and M. Hatami, “Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet,” Case Stud. Therm. Eng., vol. 25, pp. 100898, 2021. DOI: 10.1016/j.csite.2021.100898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.