54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical investigation of thermo-hydrodynamic performance of twin tube counter flow heat exchanger using cerium oxide nanofluid

ORCID Icon, , & ORCID Icon
Received 09 May 2023, Accepted 02 Oct 2023, Published online: 17 Oct 2023

References

  • H. Maddah, M. Alizadeh, N. Ghasemi, and S. R. Wan Alwi, “Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes,” Int. J. Heat Mass Transfer, vol. 78, pp. 1042–1054, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.059.
  • M. M. Rahman, S. Saha, S. Mojumder, A. G. Naim, R. Saidur, and T. A. Ibrahim, “Effect of sine-squared thermal boundary condition on augmentation of heat transfer in a triangular solar collector filled with different nanofluids,” Num. Heat Transfer Part B. Fundamentals, vol. 68, pp. 53–74, 2015. DOI: 10.1080/10407790.2014.992058.
  • E. C. Okonkwo, I. Wole-Osho, I. W. Almanassra, Y. M. Abdullatif, and T. Al-Ansari, “An updated review of nanofluids in various heat transfer devices,” J. Therm. Anal. Calorim., vol. 145, pp. 2817–2872, 2021. DOI: 10.1007/s10973-020-09760-2.
  • E. C. Okonkwo, M. Abid, and T. A. H. Ratlamwala, “Numerical analysis of heat transfer enhancement in a parabolic trough collector based on geometry modifications and working fluid usage,” J. Sol. Ener. Eng., vol. 140, pp. 1–11, 2018. DOI: 10.1115/1.4040076.
  • M. Nazari, M. Ashouri, M. H. Kayhani, and A. Tamayol, “Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam,” Int. J. Ther. Sci., vol. 88, pp. 33–39, 2015. DOI: 10.1016/j.ijthermalsci.2014.08.013.
  • P. H. Jadhav, N. Gnanasekaran, and D. Arumuga Perumal, “Thermodynamic analysis of entropy generation in a horizontal pipe filled with high porosity metal foams,” Mater. Today: Proc., vol. 51, pp. 1598–1603, Part 3, 2021. DOI: 10.1016/j.matpr.2021.10.451.
  • T. S. Athith, G. Trilok, P. H. Jadhav, and N. Gnanasekaran, “Heat transfer optimization using genetic algorithm and artificial neural network in a heat exchanger with partially filled different high porosity metal foam,” Mater. Today Proc., vol. 51, pp. 1642–1648, 2022. DOI: 10.1016/j.matpr.2021.11.248.
  • P. H. Jadhav, N. Gnanasekaran, and M. Mobedi, “Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger,” Energy, vol. 263, pp. 125691, 2023. DOI: 10.1016/j.energy.2022.125691.
  • P. H. Jadhav, T. G. N. Gnanasekaran, and M. Mobedi, “Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection,” Int. J. Heat Mass Transfer., vol. 182, pp. 121911, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.121911.
  • P. H. Jadhav, B. Kotresha, N. Gnanasekaran, and D. Arumuga Perumal, “Forced convection analysis in a horizontal pipe in the presence of aluminium metal foam—A numerical study,” Fluid Mech. Fluid Power, pp. 491–498, 2021. DOI: 10.1007/978-981-16-0698-4_53.
  • G. Huminic and A. Huminic, “Application of nanofluids in heat exchangers: A review,” Renew. Sust. Ener. Rev., vol. 16, pp. 5625–5638, 2012. DOI: 10.1016/j.rser.2012.05.023.
  • P. H. Jadhav and N. Gnanasekaran, “Optimum design of heat exchanging device for efficient heat absorption using high porosity metal foams,” Int. Comm. Heat Mass Transfer, vol. 126, pp. 105475, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105475.
  • K. Irshad, N. Islam, M. H. Zahir, A. A. Pasha, and A. F. Abdelgawad, “Thermal performance investigation of Therminol55/MWCNT + CuO nanofluid flow in a heat exchanger from an exergy and entropy approach,” Case Stud. Therm. Eng., vol. 34, pp. 102010, 2022. DOI: 10.1016/j.csite.2022.102010.
  • D. Huang, Z. Wu, and B. Sunden, “Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger,” Int. J. Heat Mass Transfer, vol. 89, pp. 620–626, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.082.
  • M. S. Kamel, O. Al-Oran, and F. Lezsovits, “Thermal conductivity of Al2O3 and CeO2 nanoparticles and their hybrid based water nanofluids: an experimental study,” Period. Polytech. Chem. Eng., vol. 65, pp. 50–60, 2020. DOI: 10.3311/PPch.15382.
  • M. Akhtari, M. Haghshenasfard, and M. R. Talaie, “Numerical and experimental investigation of heat transfer of α-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers,” Num. Heat Transfer Part A: Appl., vol. 63, pp. 941–958, 2013. DOI: 10.1080/10407782.2013.772855.
  • A. Beheshti, M. K. Moraveji, and M. Hejazian, “Comparative numerical study of nanofluid heat transfer through an annular channel,” Num. Heat Transfer Part A: Appl., vol. 67, pp. 100–117, 2015. DOI: 10.1080/10407782.2014.894359.
  • I. M. Shahrul, I. M. Mahbubul, R. Saidur, S. S. Khaleduzzaman, M. F. M. Sabri, and M. M. Rahman, “Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates,” Num. Heat Transfer Part A: Appl., vol. 65, pp. 699–713, 2014. DOI: 10.1080/10407782.2013.846196.
  • D. Zheng, J. Yang, J. Wang, S. Kabelac, and B. Sundén, “Analyses of thermal performance and pressure drop in a plate heat exchanger filled with ferrofluids under a magnetic field,” Fuel, vol. 293, pp. 120432, 2021. DOI: 10.1016/j.fuel.2021.120432.
  • A. K. Tiwari, P. Ghosh, and J. Sarkar, “Particle concentration levels of various nanofluids in plate heat exchanger for best performance,” Int. J. Heat Mass Transfer, vol. 89, pp. 1110–1118, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.118.
  • A. K. Tiwari, P. Ghosh, and J. Sarkar, “Performance comparison of the plate heat exchanger using different nanofluids,” Exp. Therm. Fluid Sci., vol. 49, pp. 141–151, 2013. DOI: 10.1016/j.expthermflusci.2013.04.012.
  • A. K. Tiwari, P. Ghosh, and J. Sarkar, “Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger,” Appl. Therm. Eng., vol. 57, pp. 24–32, 2013. DOI: 10.1016/j.applthermaleng.2013.03.047.
  • A. Dhall and W. Self, “Cerium oxide nanoparticles : A brief review of their synthesis methods and biomedical applications,” Antioxidants vol. 7, pp. 97, 2018. DOI: 10.3390/antiox7080097.
  • J. Z. Lin, Y. Xia, and X. K. Ku, “Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow,” Int. J. Heat Mass Transfer, vol. 93, pp. 57–66, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.088.
  • M. Khoshvaght-Aliabadi, “Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels,” Ener. Conv. Manag., vol. 88, pp. 96–105, 2014. DOI: 10.1016/j.enconman.2014.08.042.
  • M. Hemmat Esfe, H. Hajmohammad, D. Toghraie, H. Rostamian, O. Mahian, and S. Wongwises, “Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems,” Energy, vol. 137, pp. 160–171, 2017. DOI: 10.1016/j.energy.2017.06.104.
  • A. A. R. Darzi, M. Farhadi, and K. Sedighi, “Heat transfer and flow characteristics of Al2O3-water nanofluid in a double tube heat exchanger,” Int. Comm. Heat Mass Transfer, vol. 47, pp. 105–112, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.06.003.
  • K. Anoop, J. Cox, and R. Sadr, “Thermal evaluation of nanofluids in heat exchangers,” Int. Comm. Heat Mass Transfer, vol. 49, pp. 5–9, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.10.002.
  • M. Chandra Sekhara Reddy and V. Vasudeva Rao, “Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts,” Int. Comm. Heat Mass Transfer, vol. 50, pp. 68–76, 2014. DOI: 10.1016/j.icheatmasstransfer.2013.11.002.
  • R. S. Khedkar, S. S. Sonawane, and K. L. Wasewar, “Heat transfer study on concentric tube heat exchanger using TiO2-water based nanofluid,” Int. Comm. Heat Mass Transfer, vol. 57, pp. 163–169, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.07.011.
  • M. Goodarzi et al., “Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids,” Int. Comm. Heat Mass Transfer, vol. 66, pp. 172–179, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.002.
  • Q. Zhao, Y. Zhang, D. Zhou, Y. Huang, M. Xu, and Y. Tian, “Lattice Boltzmann method for nanofluid forced convection heat exchange in a porous channel with multiple heated sources,” Num. Heat Transfer Part A: Appl., vol. 79, pp. 21–39, 2021. DOI: 10.1080/10407782.2020.1814590.
  • X. Zhang, J. Li, and Y. Zhang, “Heat transfer characteristics of nanofluid under the action of magnetic field based on molecular dynamics and flow states,” Num. Heat Transfer Part A: Appl., vol. 0, pp. 1–25, 2023. DOI: 10.1080/10407782.2023.2187904.
  • M. Mahmoodi, A. Sohankar, and A. Joulaei, “Investigations of nanofluid flow and heat transfer in a rotating microchannel using single- and two-phase approaches,” Num. Heat Transfer Part A: Appl., vol. 83, no. 2, pp. 80–115, 2023. DOI: 10.1080/10407782.2022.2083886.
  • Z. Yang, X. Luo, G. Wang, B. Guan, and H. Yang, “Numerical study on the effects of supercritical CO2-based nanofluid on heat transfer deterioration,” Num. Heat Transfer Part A: Appl., vol. 82, pp. 193–216, 2022. DOI: 10.1080/10407782.2022.2068880.
  • A. Kumar, S. Kumar, S. Kalia, and   Priyanka, “Optimization and correlations development for heat transfer and fluid flow characteristics of ZnO/H2O-ethylene glycol-based nanofluid flow through an inclined ribbed square duct,” Num. Heat Transfer Part A: Appl., vol. 0, pp. 1–16, 2023. DOI: 10.1080/10407782.2023.2175747.
  • B. K. Sharma, C. Kumawat, and M. M. Bhatti, “Applications Optimizing energy generation in power-law nanofluid flow through curved arteries with gold nanoparticles,” Num. Heat Transf. Part A: Appl., vol. 0, pp. 1–33, 2023. DOI: 10.1080/10407782.2023.2232123.
  • M. M. Bhatti and R. Ellahi, “Numerical investigation of non-Darcian nanofluid flow across a stretchy elastic medium with velocity and thermal slips,” Num. Heat Transf. Part B: Fundamentals, vol. 83, pp. 323–343, 2023. DOI: 10.1080/10407790.2023.2174624.
  • P. Michael Joseph Stalin, T. V. Arjunan, M. M. Matheswaran, and N. Sadanandam, “Experimental and theoretical investigation on the effects of lower concentration CeO 2/water nanofluid in flat-plate solar collector,” J. Therm. Anal. Calorim., vol. 135, no. 1, pp. 29–44, 2019. DOI: 10.1007/s10973-017-6865-4.
  • P. Mayeli, H. Hesami, H. Besharati-Foumani, and M. Niajalili, “Applications Al2O3–water nanofluid heat transfer and entropy generation in a ribbed channel with wavy wall in the presence of magnetic field,” Num. Heat Transfer Part A: Appl., vol. 73, no. 9, pp. 604–623, 2018. DOI: 10.1080/10407782.2018.1461494.
  • T. S. Sreeremya, A. Krishnan, A. P. Mohamed, U. S. Hareesh, and S. Ghosh, “Synthesis and characterization of cerium oxide based nanofluids : An efficient coolant in heat transport applications,” Chem. Eng. J., vol. 255, pp. 282–289, 2014. DOI: 10.1016/j.cej.2014.06.061.
  • G. S. Reddy, R. Kalaivanan, R. U. Kumar, and K. P. V. K. Varma, “Augmenting heat transfer performance in a heat exchanger with CeO2 nanofluids,” Mat. Res. Innov., vol. 0, pp. 1–13, 2023. DOI: 10.1080/14328917.2023.2213487.
  • P. H. Jadhav, G. Nagarajan, and D. A. Perumal, “Conjugate heat transfer study comprising the effect of thermal conductivity and irreversibility in a pipe filled with metallic foams,” Heat Mass Transfer, vol. 57, no. 6, pp. 911–930, 2021. DOI: 10.1007/s00231-020-03000-x.
  • P. H. Jadhav, N. Gnanasekaran, and D. A. Perumal, “Numerical consideration of LTNE and Darcy extended Forchheimer models for the analysis of forced convection in a horizontal pipe in the presence of metal foam,” J. Heat Transfer, vol. 143, pp. 1–16, 2021. DOI: 10.1115/1.4048622.
  • P. H. Jadhav, N. Gnanasekaran, D. A. Perumal, and M. Mobedi, “Performance evaluation of partially filled high porosity metal foam configurations in a pipe,” Appl. Therm. Eng., vol. 194, pp. 117081, 2021. DOI: 10.1016/j.applthermaleng.2021.117081.
  • G. Narendran, N. Gnanasekaran, and D. A. Perumal, “Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid,” Heat Mass Transfer, vol. 56, pp. 489–505, 2020. DOI: 10.1007/s00231-019-02704-z.
  • P. V. K. V. Kola, S. K. Pisipaty, S. S. Mendu, and R. Ghosh, “Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM,” Chem. Eng. Process. Proc. Intensifi., vol. 163, pp. 108362, 2021. DOI: 10.1016/j.cep.2021.108362.
  • K. Aroonrat, C. Jumpholkul, R. Leelaprachakul, A. S. Dalkilic, O. Mahian, and S. Wongwises, “Heat transfer and single-phase flow in internally grooved tubes,” Int. Comm. Heat Mass Transfer, vol. 42, pp. 62–68, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.12.001.
  • J. Fernández-Seara, F. J. Uhía, and J. Sieres, “Laboratory practices with the wilson plot method,” Exp. Heat Transfer, vol. 20, pp. 123–135, 2007. DOI: 10.1080/08916150601091415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.