60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Activation of energy in MHD Casson nanofluid flow through a porous medium in the presence of convective boundary conditions and suction/injection

, ORCID Icon, ORCID Icon & ORCID Icon
Received 21 Apr 2023, Accepted 04 Oct 2023, Published online: 25 Oct 2023

References

  • M. M. Nandeppanavar, M. S. Abel and K. Vajravelu, “Flow and heat transfer characteristics of a viscoelastic fluid in a porous medium over an impermeable stretching sheet with viscous dissipation,” Int. J. Heat Mass Transf., vol. 53, no. 21-22, pp. 4707–4713, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.021.
  • N. Samyuktha and R. Ravindran, “Thermal radiation effect on mixed convection flow over a vertical stretching sheet embedded in a porous medium with suction (injection),” Proc. Eng., vol. 127, pp. 767–774, 2015. DOI: 10.1016/j.proeng.2015.11.411.
  • T. Hayat, Z. Iqbal, M. Mustafa and A. Alsaedi, “Momentum and heat transfer of an upper convected Maxwell fluid over a moving surface with convective boundary conditions,” Nucl. Eng. Des., vol. 252, pp. 242–247, 2012. DOI: 10.1016/j.nucengdes.2012.07.012.
  • K. A. Khan, R. A. Butt and N. Raza, “Effects of heat and mass transfer on unsteady boundary layer flow of a chemical reacting Casson fluid,” Results Phys., vol. 8, pp. 610–620, 2018. DOI: 10.1016/j.rinp.2017.12.080.
  • F. Mabood and K. Das, “Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation,” Heliyon, vol. 5, no. 2, pp. e01216, 2019. DOI: 10.1016/j.heliyon.2019.e01216.
  • H. Dessie and N. Kishan, “MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation, and heat source/sink,” Ain Shams Eng. J., vol. 5, no. 3, pp. 967–977, 2014. DOI: 10.1016/j.asej.2014.03.008.
  • K. Gangadhar, M. Venkata Subba Rao and P. R. Sobhana Babu, “Numerical analysis for steady boundary layer flow of Maxwell fluid over a stretching surface embedded in a porous medium with viscous dissipation using the spectral relaxation method,” Int. J. Ambient Energy, vol. 42, no. 13, pp. 1492–1498, 2021. DOI: 10.1080/01430750.2019.1611641.
  • N. N. Reddy, V. Srinivasa Rao and B. Ravindra Reddy, “Chemical reaction impact on MHD natural convection flow through porous medium past an exponentially stretching sheet in presence of heat source/sink and viscous dissipation,” Case Stud. Therm. Eng., vol. 25, pp. 100879, 2021. DOI: 10.1016/j.csite.2021.100879.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “Influence of thermal radiation and viscous dissipation on MHD flow of UCM fluid over a porous stretching sheet with higher order chemical reaction,” Top. Rev. Porous Media Int. J., vol. 12, no. 4, pp. 33–49, 2021a. DOI: 10.1615/SpecialTopicsRevPorousMedia.2020033950.
  • S. Khaliq, Z. Abbas, M. Y. Rafiq and M. Sajid, “Sensitivity of the slip condition and viscoplastic effect of the micropolar-Casson fluid during a non-isothermal blade coating process,” Waves Random Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2104954.
  • A. Hanif, Z. Abbas and S. Khaliq, “Rheological impact of Sutterby fluid in isothermal forward roll coating process: a theoretical study,” J. Plast. Film Sheeting, vol. 39, no. 1, pp. 115–133, 2023. DOI: 10.1177/87560879221111820.
  • T. Abbas, S. Rehman, R. A. Shah, M. Idrees and M. Qayyum, “Analysis of MHD Carreau fluid flow over a stretching permeable sheet with variable viscosity and thermal conductivity,” Phys. A Stat. Mech. Appl., vol. 551, pp. 124225, 2020. DOI: 10.1016/j.physa.2020.124225.
  • M. Saqlain, M. I. Anwar and M. Waqas, “Transportation of heat and mass of nonlinear mixed convective boundary flow of Casson fluid with generalized Fourier’s and Fick’s laws and stratification effect,” Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci., vol. 236, no. 7, pp. 3387–3497, 2022. DOI: 10.1177/09544062211039531.
  • M. Vinodkumar Reddy, P. Lakshminarayana and K. Vajravelu, “Magnetohydrodynamic radiative flow of a Maxwell fluid on an expanding surface with the effects of Dufour and Soret and chemical reaction,” Comput. Thermal Scien., vol. 12, no. 4, pp. 317–327, 2020. DOI: 10.1615/ComputThermalScien.2020034147.
  • M. Vinodkumar Reddy, P. Lakshminarayana and K. Vajravelu, “A comparative study of MHD non-Newtonian fluid flows with the effects of chemical reaction and radiation over a stretching sheet,” Comput. Thermal Sci., vol. 13, no. 5, pp. 17–29, 2021. DOI: 10.1615/ComputThermalScien.2021037094.
  • R. Meenakumari and P. Lakshminarayana, “MHD 3D flow of powell eyring fluid over a bidirectional non-linear stretching surface with temperature dependent conductivity and heat absorption/generation,” Proc. Inst. Mech. Eng. E J. Process Mech. Eng., vol. 236, no. 6, pp. 2580–2588, 2022. DOI: 10.1177/09544089221097695.
  • R. Meenakumari and P. Lakshminarayana, “Radiation and Hall effects on a 3D flow of MHD Williamson fluid over a stretchable surface,” Heat Transf., vol. 49, no. 8, pp. 4410–4426, 2020. DOI: 10.1002/htj.21833.
  • Aamir, Hamid, Masood, Khan, Hashim, “Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid,” J. Mol. Liq., vol. 262, pp. 435–442, 2018. DOI: 10.1016/j.molliq.2018.04.095.
  • M. Senapati, S. K. Parida, K. Swain and S. M. Ibrahim, “Analysis of variable magnetic field on chemically dissipative MHD boundary layer flow of Casson fluid over a nonlinearly stretching sheet with slip conditions,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 3712–3726, 2022. DOI: 10.1080/01430750.2020.1831601.
  • I. Ullah, K. Bhattacharyya, S. Shafie and I. Khan, “Unsteady MHD mixed convection slip flow of Casson fluid over nonlinearly stretching sheet embedded in a porous medium with chemical reaction, thermal radiation, heat generation/absorption and convective boundary conditions,” PLoS One, vol. 11, no. 10, pp. e0165348, 2016. DOI: 10.1371/journal.pone.0165348.
  • W. K. Usafzai, A. M. Saeed, E. H. Aly, V. Puneeth and I. Pop, “Wall jet nanofluid flow with thermal energy and radiation in the presence of power-law,” Numer. Heat Transf. A Appl., pp. 1–13, 2023. DOI: 10.1080/10407782.2023.2222456.
  • W. K. Usafzai, E. H. Aly, A. S. Alshomrani and M. Z. Ullah, “Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105831, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105831.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • A. Rauf, M. K. Siddiq, F. M. Abbasi, M. A. Meraj, M. Ashraf and S. A. Shehzad, “Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid,” J. Magn. Magn. Mater., vol. 416, pp. 200–207, 2016. DOI: 10.1016/j.jmmm.2016.04.092.
  • S. M. Ibrahim, G. Lorenzini, P. Vijaya Kumar and C. S. K. Raju, “Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet,” Int. J. Heat Mass Transf., vol. 111, pp. 346–355, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.097.
  • J. V. Tawade, C. N. Guled, S. Noeiaghdam, U. Fernandez-Gamiz, V. Govindan and S. Balamuralitharan, “Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet,” Results Eng., vol. 15, pp. 100448, 2022. DOI: 10.1016/j.rineng.2022.100448.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “Cross-diffusion and heat source effects on a three-dimensional MHD flow of Maxwell nanofluid over a stretching surface with chemical reaction,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1371–1379, 2021b. DOI: 10.1140/epjs/s11734-021-00037-9.
  • R. Meenakumari, P. Lakshminarayana and K. Vajravelu, “Unsteady MHD flow of a Williamson nanofluid on a permeable stretching surface with radiation and chemical reaction effects,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1355–1370, 2021. DOI: 10.1140/epjs/s11734-021-00039-7.
  • M. Krishna Murthy, S. Sreenadh, P. Lakshminarayana, G. Sucharitha and B. Rushi Kumar, “Thermophoresis and Brownian motion effects on three-dimensional magnetohydrodynamics slip flow of a Casson nanofluid over an exponentially stretching surface,” J Nanofluids, vol. 8, no. 6, pp. 1267–1272, 2019. DOI: 10.1166/jon.2019.1687.
  • G. Mahanta, M. Das, S. Shaw and K. L. Mahanta, “Heat and mass transfer of Casson nanofluid flow over a stretching sheet in the presence of magnetic field with Brownian and thermophoretic effects,” J. Eng. Sci. Technol., vol. 14, no. 5, pp. 3046–3061, 2019.
  • L. Panigrahi, J. Panda, K. Swain and G. C. Dash, “Heat and mass transfer of MHD Casson nanofluid flow through a porous medium past a stretching sheet with Newtonian heating and chemical reaction,” Karbala Int. J. Mod. Sci., vol. 6, no. 3, pp. 11, 2020. DOI: 10.33640/2405-609X.1740.
  • S. Nadeem, et al., “Numerical computations for Buongiorno nano fluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet,” Alex. Eng. J., vol. 61, no. 2, pp. 1769–1778, 2022. DOI: 10.1016/j.aej.2021.11.013.
  • M. Y. Malik, M. Khan, T. Salahuddin and I. Khan, “Variable viscosity and MHD flow in Casson fluid with Cattaneo-Christov heat flux model: using Keller box method,” Eng. Sci. Technol. Int. J., vol. 19, no. 4, pp. 1985–1992, 2016. DOI: 10.1016/j.jestch.2016.06.008.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “Higher order chemical reaction and radiation effects on MHD flow of a Maxwell nanofluid with Cattaneo-Christov heat flux model over a stretching sheet in a porous medium,” J. Fluids Eng., vol. 144, no. 4, pp. 041204, 2022a. DOI: 10.1115/1.4053250.
  • M. Azam, “Effects of Cattaneo-Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy,” Case Stud. Therm. Eng., vol. 34, pp. 102048, 2022. DOI: 10.1016/j.csite.2022.102048.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “MHD radiative flow of Williamson nanofluid with Cattaneo-Christov model over a stretching sheet through a porous medium in the presence of chemical reaction and suction/injection,” J. Por. Media, vol. 25, no. 12, pp. 1–15, 2022b. DOI: 10.1615/JPorMedia.2022041423.
  • M. Vinodkumar Reddy, G. Sucharitha, K. Vajravelu and P. Lakshminarayana, “Convective flow of MHD non-Newtonian nanofluids on a chemically reacting porous sheet with Cattaneo-Christov double diffusion,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2111478.
  • J. Li, J. Zheng and L. Liu, “MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects,” J. Mol. Liq., vol. 221, pp. 19–25, 2016. DOI: 10.1016/j.molliq.2016.05.051.
  • S. Saleem, M. Awais, S. Nadeem, N. Sandeep and M. T. Mustafa, “Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo-Christov heat flux model,” Chin. J. Phys., vol. 55, no. 4, pp. 1615–1625, 2017. DOI: 10.1016/j.cjph.2017.04.005.
  • B. Ramandevi, J. V. Ramana Reddy, V. Sugunamma and N. Sandeep, “Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux,” Alex. Eng. J., vol. 57, no. 2, pp. 1009–1018, 2018. DOI: 10.1016/j.aej.2017.01.026.
  • B. J. Gireesha, B. M. Shankaralingappa, B. C. Prasannakumar and B. Nagaraja, “MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo-Christov heat flux model,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 2931–2939, 2022. DOI: 10.1080/01430750.2020.1785938.
  • M. Dhlamini, P. K. Kameswaran, P. Sibanda, S. Motsa and H. Mondal, “Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions,” J. Comput. Des. Eng., vol. 6, no. 2, pp. 149–158, 2019. DOI: 10.1016/j.jcde.2018.07.002.
  • Y. M. Chu, et al., “Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: a Buongiorno model analysis,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104893, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104893.
  • A. Zeeshan, O. U. Mehmood, F. Mabood and F. Alzahrani, “Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105736, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105736.
  • Z. Abbas, M. Sheikh and S. S. Motsa, “Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation,” Energy, vol. 95, pp. 12–20, 2016. DOI: 10.1016/j.energy.2015.11.039.
  • M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, “Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy,” Int. Commun. Heat Mass Transf., vol. 108, pp. 1340–1346, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.029.
  • M. I. Khan, M. W. A. Khan, A. Alsaedi, T. Hayat and M. I. Khan, “Entropy generation optimization in flow of non-Newtonian nanomaterial with binary chemical reaction and Arrhenius activation energy,” Phys. A Stat. Mech. Appl., vol. 538, pp. 122806, 2020. DOI: 10.1016/j.physa.2019.122806.
  • A. Majeed, et al., “Analysis of activation energy in magnetohydrodynamic flow with chemical reaction and second order momentum slip model,” Case Stud. Therm. Eng., vol. 12, pp. 765–773, 2018. DOI: 10.1016/j.csite.2018.10.007.
  • A. Shahid, M. M. Bhatti, R. Ellahi and K. S. Mekheimer, “Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: application in solar energy,” Sustain. Energy Technol. Assess, vol. 52, pp. 102029, 2022. DOI: 10.1016/j.seta.2022.102029.
  • S. K. Mondal and D. Pal, “Performance of activation energy and variable thermal conductivity on bioconvection heat transfer of Williamson nanofluid undergoing binary chemical reaction with multiple slip,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 6108–6120, 2022. DOI: 10.1080/01430750.2021.1997811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.