142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of induced magnetic field on ferromagnetic ternary and hybrid nanofluid flows with surface catalyzed reaction and entropy generation assessment

, ORCID Icon, &
Received 17 Jul 2023, Accepted 19 Oct 2023, Published online: 28 Oct 2023

References

  • M. I. Afridi, T. A. Alkanhal, M. Qasim and I. Tlili, “Entropy generation in Cu-Al2O3-H2O hybrid nanofluid flow over a curved surface with thermal dissipation,” Entropy., vol. 21, no. 10, p. 941, 2019. DOI: 10.3390/e21100941.
  • P. K. Dadheech, P. Agrawal, S. D. Purohit and D. Kumar, “Study of flow and heat transfer of CuO − Ag/C2H6O2 hybrid nanofluid over a stretching surface with porous media and MHD effect,” Sci. Technol. Asia., vol. 26, no. 4, pp. 174–181, 2021.
  • R. Gupta, M. Gaur, P. K. Dadheech and P. Agrawal, “Numerical study of marangoni convection flow of GO-nanofluid with H2O–EG hybrid base fluid with non-linear thermal radiation,” J. Nanofluids., vol. 11, no. 2, pp. 245–250, 2022. DOI: 10.1166/jon.2022.1835.
  • M. Mansourian, S. Dinarvand and I. Pop, “Aqua cobalt ferrite/Mn–Zn ferrite hybrid nanofluid flow over a nonlinearly stretching permeable sheet in a porous medium,” J. Nanofluids., vol. 11, no. 3, pp. 383–391, 2022. DOI: 10.1166/jon.2022.1841.
  • A. M. Alqahtani, M. Bilal, M. Usman, T. R. Alsenani, A. Ali and S. R. Mahmuod, “Heat and mass transfer through MHD Darcy Forchheimer Casson hybrid nanofluid flow across an exponential stretching sheet,” ZAMM Z. Angew. Math. Mech., 2023. DOI: 10.1002/zamm.202200213.
  • T. Chakraborty, P. R. Duari and N. Acharya, “Unfolding flow features of MHD hybrid nanofluid (Ag–Al2O3–H2O) and mono nanofluid (Al2O3–H2O) flow over exponentially expanded sheet soaked in a Darcy–Forchheimer absorbent medium co-existing non-uniform heat generation/absorption,” Waves Random Complex Media., pp. 1–28, 2023. DOI: 10.1080/17455030.2023.2171153.
  • N. Ameer, Ahammad, Nehad Ali, Shah, Jae Dong, Chung, Zeeshan, “Role of nanofluid and hybrid nanofluid for enhancing thermal conductivity towards exponentially stretching curve with modified fourier law inspired by melting heat effect,” Mathematics., vol. 11, no. 5, p. 1170, 2023. DOI: 10.3390/math11051170.
  • I. L. Animasaun, S. J. Yook, T. Muhammad and A. Mathew, “Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface,” Surf. Interfaces., vol. 28, p. 101654, 2022. DOI: 10.1016/j.surfin.2021.101654.
  • Z. Mahmood, M. A. Iqbal, M. A. Alyami, B. Alqahtani, M. F. Yassen and U. Khan, “Influence of suction and heat source on MHD stagnation point flow of ternary hybrid nanofluid over convectively heated stretching/shrinking cylinder,” Adv. Mech. Eng., vol. 14, no. 9, 2022. DOI: 10.1177/16878132221126278.
  • W. Cao, I. L. Animasaun, S. J. Yook, V. A. Oladipupo and X. Ji, “Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid,” ICHMT., vol. 135, p. 106069, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106069.
  • K. Guedri, et al., “Thermally dissipative flow and Entropy analysis for electromagnetic trihybrid nanofluid flow past a stretching surface,” ACS Omega., vol. 7, no. 37, pp. 33432–33442, 2022. DOI: 10.1021/acsomega.2c04047.
  • J. K. Madhukesh, et al., “Analysis of buoyancy assisting and opposing flows of colloidal mixture of titanium oxide, silver, and aluminium oxide nanoparticles with water due to exponentially stretchable surface,” Arab. J. Chem., vol. 16, no. 4, p. 104550, 2023. DOI: 10.1016/j.arabjc.2023.104550.
  • B. Souayeh and K. Ramesh, “Numerical scrutinization of ternary nanofluid flow over an exponentially stretching sheet with gyrotactic microorganisms,” Mathematics., vol. 11, no. 4, p. 981, 2023. DOI: 10.1016/j.arabjc.2023.104550.
  • H. Alotaibi and M. Ramzan, “Comparative study of hybrid and nanofluid flows over an exponentially stretched curved surface with modified Fourier law and dust particles,” Waves Random Complex Media., vol. 32, no. 6, pp. 3053–3073, 2022. DOI: 10.1080/17455030.2022.2049925.
  • M. Bilal, I. Ullah, M. M. Alam, W. Weera and A. M. Galal, “Numerical simulations through PCM for the dynamics of thermal enhancement in ternary MHD hybrid nanofluid flow over plane sheet, cone, and wedge,” Symmetry., vol. 14, no. 11, p. 2419, 2022. DOI: 10.1080/17455030.2022.2049925.
  • Y. Mehmood, R. Shafqat, I. E. Sarris, M. Bilal, T. Sajid and T. Akhtar, “Numerical investigation of MWCNT and SWCNT fluid flow along with the activation energy effects over quartic auto catalytic endothermic and exothermic chemical reactions,” Mathematics., vol. 10, no. 24, p. 4636, 2022. DOI: 10.3390/math10244636.
  • N. Islam, et al., “Thermal efficiency appraisal of hybrid nanocomposite flow over an inclined rotating disk exposed to solar radiation with Arrhenius activation energy,” Alex. Eng. J, vol. 68, pp. 721–732, 2023. DOI: 10.1016/j.aej.2022.12.029.
  • O. A. Bég, A. Y. Bakier, V. R. Prasad, J. Zueco and S. K. Ghosh, “Nonsimilar, laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field effects,” Int. J. Therm. Sci., vol. 48, no. 8, pp. 1596–1606, 2009. DOI: 10.1016/j.ijthermalsci.2008.12.007.
  • M. M. Junoh, F. M. Ali, N. M. Arifin, N. Bachok and I. Pop, “MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid with induced magnetic field,” HFF., vol. 30, no. 3, pp. 1345–1364, 2020. DOI: 10.1108/HFF-06-2019-0500.
  • M. N. Khan, S. Nadeem, N. Abbas and A. M. Zidan, “Heat and mass transfer investigation of a chemically reactive Burgers nanofluid with an induced magnetic field over an exponentially stretching surface,” Proc. Inst. Mech. Eng. E J. Process Mech. Eng., vol. 235, no. 6, pp. 2189–2200, 2021. DOI: 10.1177/09544089211034941.
  • L. Zhang, M. M. Bhatti, E. E. Michaelides, M. Marin and R. Ellahi, “Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field,” Eur. Phys. J. Spec. Top., vol. 231, no. 3, pp. 521–533, 2022. DOI: 10.1140/epjs/s11734-021-00409-1.
  • T. A. Shatnawi, N. Abbas and W. Shatanawi, “Comparative study of Casson hybrid nanofluid models with induced magnetic radiative flow over a vertical permeable exponentially stretching sheet,” MATH., vol. 7, no. 12, pp. 20545–20564, 2022. DOI: 10.3934/math.20221126.
  • M. Mishra, L. Panigrahi and J. Panda, “Investigation of induced magnetic field on MHD radiative flow across an exponentially stretching sheet,” Int. J. Ambient Energy., vol. 44, no. 1, pp. 1–40, 2023. DOI: 10.1080/01430750.2023.2169757.
  • K. Bhattacharyya and G. C. Layek, “Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet,” Phys. Res. Int., vol. 2014, pp. 1–12, 2014. DOI: 10.1155/2014/592536.
  • R. Jusoh, R. Nazar and I. Pop, “Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet,” J. Magn. Magn. Mater., vol. 465, pp. 365–374, 2018. DOI: 10.1016/j.jmmm.2018.06.020.
  • N. Kumar, et al., “Radiation and slip effects on MHD point flow of nanofluid towards a stretching sheet with melting heat transfer,” Heat Trans., vol. 51, no. 4, pp. 3018–3034, 2022. DOI: 10.1002/htj.22434.
  • A. Abbas, R. Shafqat, M. B. Jeelani and N. H. Alharthi, “Significance of chemical reaction and Lorentz force on third-grade fluid flow and heat transfer with Darcy–Forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium,” Symmetry., vol. 14, no. 4, p. 779, 2022. DOI: 10.3390/sym14040779.
  • N. S. Anuar, N. Bachok, N. M. Arifin and H. Rosali, “Stagnation point flow and heat transfer over an exponentially stretching/shrinking sheet in CNT with homogeneous–heterogeneous reaction: stability analysis,” Symmetry., vol. 11, no. 4, p. 522, 2019. DOI: 10.3390/sym11040522.
  • C. Liu, M. Pan, L. Zheng and P. Lin, “Effects of heterogeneous catalysis in porous media on nanofluid-based reactions,” ICHMT., vol. 110, p. 104434, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104434.
  • P. M. Patil and S. Benawadi, “Mixed convection hybrid nanoliquid flow over an exponentially stretching rough (smooth) surface with the impacts of homogeneous–heterogeneous reactions,” Heat Trans., vol. 50, no. 8, pp. 8103–8120, 2021. DOI: 10.1002/htj.22268.
  • I. Haq, et al., “Impact of homogeneous and heterogeneous reactions in the presence of hybrid nanofluid flow on various geometries,” Front. Chem., vol. 10, p. 1032805, 2022. DOI: 10.3389/fchem.2022.1032805.
  • E. M. A. Elbashbeshy, “Heat transfer over an exponentially stretching continuous surface with suction,” Arch. Mech., vol. 53, no. 6, pp. 643–651, 2001.
  • H. Waqas, U. Farooq, M. Alghamdi and T. Muhammad, “Significance of surface-catalyzed reactions in SiO2-H2O nanofluid flow through porous media,” Arch. Mech., vol. 27, p. 101228, 2021. DOI: 10.1016/j.csite.2021.101228.
  • M. Ramzan, et al., “Upshot of heterogeneous catalysis in a nanofluid flow over a rotating disk with slip effects and entropy optimization analysis,” Sci. Rep., vol. 11, no. 1, p. 120, 2021. DOI: 10.1038/s41598-020-80553-1.
  • M. Ramzan, S. Riasat, S. F. Aljurbua, H. A. S. Ghazwani and O. Mahmoud, “Hybrid nanofluid flow induced by an oscillating disk considering surface catalyzed reaction and nanoparticles shape factor,” Nanomaterials., vol. 12, no. 11, p. 1794, 2022. DOI: 10.3390/nano12111794.
  • M. Ramzan, H. Gul, H. A. S. Ghazwani, K. S. Nisar and C. A. Saleel, “Numerical appraisal of Yamada–Ota hybrid nanofluid flow over a cylindrical surface and a sheet with surface-catalyzed reaction using Keller box approximations,” Int. J. Mod. Phys. B., vol. 37, no. 01, p. 2350002, 2023. DOI: 10.1142/S0217979223500029.
  • R. Razzaq and U. Farooq, “Non-similar forced convection analysis of Oldroyd-B fluid flow over an exponentially stretching surface,” Adv. Mech. Eng., vol. 13, no. 7, 2021. DOI: 10.1177/16878140211034604.
  • M. A. Chaudhary and J. H. Merkin, “A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I. Equal diffusivities,” Fluid Dyn. Res., vol. 16, no. 6, pp. 311–333, 1995. DOI: 10.1016/0169-5983(95)00015-6.
  • C. J. Ho, J. B. Huang, P. S. Tsai and Y. M. Yang, “Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid,” ICHMT., vol. 37, no. 5, pp. 490–494, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.12.007.
  • J. Wohld, et al., “Hybrid nanofluid thermal conductivity and optimization: original approach and background,” Nanomaterials., vol. 12, no. 16, p. 2847, 2022. DOI: 10.3390/nano12162847.
  • R. Pal, “On the Lewis–Nielsen model for thermal/electrical conductivity of composites,” Compos. A Appl. Sci., vol. 39, no. 5, pp. 718–726, 2008. DOI: 10.1016/j.compositesa.2008.02.008.
  • S. M. R. Naqvi, et al., “Numerical simulations of hybrid nanofluid flow with thermal radiation and entropy generation effects,” Case Stud. Therm. Eng., vol. 40, p. 102479, 2022. DOI: 10.1016/j.csite.2022.102479.
  • S. Das, H. Mondal, P. K. Kundu and P. Sibanda, “Spectral quasi-linearization method for Casson fluid with homogeneous heterogeneous reaction in presence of nonlinear thermal radiation over an exponential stretching sheet,” MMMS., vol. 15, no. 2, pp. 398–417, 2019. DOI: 10.1108/MMMS-04-2018-0073.
  • M. V. V. N. L. Sudharani, D. G. Prakasha, K. G. Kumar and A. J. Chamkha, “Computational assessment of hybrid and tri hybrid nanofluid influenced by slip flow and linear radiation,” Eur. Phys. J. Plus., vol. 138, no. 3, p. 257, 2023. DOI: 10.1140/epjp/s13360-023-03852-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.