42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MHD nanofluid flow with energy transfer over a porous stretching surface by using a second-grade fluid model

ORCID Icon & ORCID Icon
Received 17 Jul 2023, Accepted 26 Oct 2023, Published online: 07 Nov 2023

References

  • D. Dey, R. Borah and A. J. Baruah, “Dual solutions of hybrid nanofluid flow over a cone with the influence of thermal radiation and chemical reaction and its stability analysis,” East Eur. J. Phys., no. 2, pp. 98–106, 2023. DOI: 10.26565/2312-4334-2023-2-08.
  • D. Dey, R. Borah and M. Hazarika, “Effects of homogeneous and heterogeneous reactions on the water-based nanofluid streaming above an extending surface,” LAAR, vol. 53, no. 3, pp. 221–229, 2023. DOI: 10.52292/j.laar.2023.1031.
  • D. Dey and R. Borah, “Numerical simulation of boundary layer flow of MHD influenced nanofluid over an exponentially elongating sheet,” in Emerging Technologies in Data Mining and Information Security. Lecture Notes in Networks and Systems, vol. 491, P. Dutta, S. Chakrabarti, A. Bhattacharya, S. Duuta, and V. Piuri, Eds. Singapore: Springer Nature Singapore, 2023, pp. 13–24.
  • D. Dey, R. Borah and J. Borah, “Mathematical modelling of magnetized nanofluid flow over an elongating cylinder with erratic thermal conductivity,” in Nonlinear Dynamics and Applications, S. Banarjee, and A. Saha, Eds. Berlin, Germany: Springer Proceedings in Complexity, 2022, pp. 509–523.
  • H. Upreti, A. K. Pandey, N. Joshi and O. D. Makinde, “Thermodynamics and heat transfer analysis of magnetized Casson Hybrid nanofluid flow via a Riga plate with thermal radiation,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 321–334, 2023. DOI: 10.1142/S2737416523400070.
  • N. A. A. Sama, N. Bachok and N. Md Arifin, “The significant effect of hydromagnetic on carbon nanotubes based nanofluids flow and heat transfer past a porous stretching/shrinking sheet,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 106, no. 1, pp. 51–64, 2023. DOI: 10.37934/arfmts.106.1.5164
  • T. Oreyeni, A. Oladimeji Akindele, A. Martins Obalalu, S. Olakunle Salawu and K. Ramesh, “Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo–Christov heat flux model: solar-powered ship application,” Numer. Heat Transf. A Appl., pp. 1–19, 2023. DOI: 10.1080/10407782.2023.2213837.
  • K. A. Duguma, O. D. Makinde and L. G. Enyadene, “Dual solutions and stability analysis of Cu-H2O-Casson nanofluid convection past a heated stretching/shrinking slippery sheet in a porous medium,” Comput. Math. Methods, vol. 2023, pp. 1–20, 2023. DOI: 10.1155/2023/6671523.
  • S. Rao and P. Deka, “A numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow over a porous stretching sheet with stability analysis,” Heat Trans., vol. 51, no. 8, pp. 8020–8042, 2022. DOI: 10.1002/htj.22679.
  • S. Rao and P. N. Deka, “A study on MHD flow of SWCNT-Al 2 O 3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions,” Numer. Heat Transf. A Appl, pp. 1–21, 2023. DOI: 10.1080/10407782.2023.2207731.
  • T. Gul, et al., “Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere,” Sci. Rep., vol. 11, no. 1, pp. 7460, 2021. DOI: 10.1038/s41598-021-86868-x.
  • S. S. Ghadikolaei, K. Hosseinzadeh, M. Yassari, H. Sadeghi and D. D. Ganji, “Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet,” Therm. Sci. Eng. Prog., vol. 5, pp. 309–316, 2018. DOI: 10.1016/j.tsep.2017.12.010.
  • H. Basha, G. J. Reddy, A. Killead, V. Pujari, N. N. Kumar, Abhishek, “Numerical modelling of second-grade fluid flow past a stretching sheet,” Heat Trans. Asian Res. vol. 48(5), pp. 1595–1621, 2019. DOI: 10.1002/htj.21448.
  • M. A. Rana and A. Latif, “Three-dimensional free convective flow of a second-grade fluid through a porous medium with periodic permeability and heat transfer,” Bound. Value Probl., vol. 2019, no. 1, pp. 44, 2019. DOI: 10.1186/s13661-019-1144-x
  • D. Dey and R. Borah, “Stability analysis on dual solutions of second-grade fluid flow with heat and mass transfers over a stretching sheet,” Int. J. Thermofluid Sci. Technol., vol. 8, no. 2, p. 080203, 2021. DOI: 10.36963/ijtst.2021080203
  • Z. Khan, S. Ul Haq, F. Ali and M. Andualem, “Free convection flow of second grade dusty fluid between two parallel plates using Fick’s and Fourier’s laws: a fractional model,” Sci. Rep., vol. 12, no. 1, pp. 3448, 2022. DOI: 10.1038/s41598-022-06153-3.
  • D. Dey and R. Borah, “Dual solutions of boundary layer flow with heat and mass transfers over an exponentially shrinking cylinder: stability analysis,” LAAR, vol. 50, no. 4, pp. 247–253, 2020. DOI: 10.52292/j.laar.2020.535.
  • D. Dey and M. Hazarika, “Entropy generation analysis and slip effects on nano fluid flow with heat and mass transfer," In Advances in Thermofluids and Renewable Energy . Lecture Notes in Mechanical Engineering. P. Mahanta, P. Kalita, A. Paul, and A. Banerjee, Eds. Singapore: Springer., 2021, pp. 59–71, 2022. DOI: 10.1007/978-981-16-3497-0_5
  • D. Dey and B. Chutia, “Dusty nanofluid flow with bioconvection past a vertical stretching surface,” J. KS Univ. - Eng. Sci., vol. 34, no. 6, pp. 375-380, 2020. DOI: 10.1016/j.jksues.2020.11.001
  • D. Dey and R. Borah, “Steady and unsteady solutions of free convective micropolar fluid flow near the lower stagnation point of a solid sphere,” in Applied Mathematics and Computational Intellegence. ICAMCI 2020, vol. 413, O. Castillo, U.K. Bera, and D.K. Jana, Eds. Berlin, Germany: Springer Proceedings in Mathematics & Statistics, 2020, pp. 1–14.
  • B. Prabhakar Reddy and O. D. Makinde, “Numerical study on MHD radiating and reacting unsteady slip flow past a vertical permeable plate in a porous medium,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 6007–6016, 2022. DOI: 10.1080/01430750.2021.1999323.
  • H. Talla, N. N. V. Sakuntala and W. Sridhar, “Homotopy analysis to mhd visco-elastic fluid flow and heat transfer over an exponentially stretching sheet,” Ann. Rom. Soc. Cell Biol., vol. 25, no. 3, pp. 1850–1857, 2021. DOI: https://annalsofrscb.ro/index.php/journal/article/view/1628
  • T. Sarkar, S. Reza-E-Rabbi, S. M. Arifuzzaman, R. Ahmed, M. S. Khan and S. F. Ahmmed, “MHD radiative flow of Casson and Williamson nanofluids over an inclined cylindrical surface with chemical reaction effects,” Int. J. Heat Technol., vol. 37, no. 4, pp. 1117–1126, 2019. DOI: 10.18280/ijht.370421.
  • A. K. Jhankal and M. Kumar, “MHD boundary layer flow past over a shrinking sheet with heat transfer and mass suction,” Int. J. Computat. Appl. Math., vol. 12, no. 2, pp. 441–448, 2017.
  • D. Dey and B. Chutia, “Two‐phase fluid motion through porous medium with volume fraction: an application of MATLAB bvp4c solver technique,” Heat Trans., vol. 51, no. 2, pp. 1778–1789, 2022. DOI: 10.1002/htj.22374.
  • M. V. Krishna, P. V. S. Anand and A. J. Chamkha, “Heat and mass transfer on free convective flow of a micropolar fluid through a porous surface with inclined magnetic field and hall effects,” Special Top. Rev. Porous Media, vol. 10, no. 3, pp. 203–223, 2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2018026943.
  • M. V. Krishna, B. V. Swarnalathamma and A. J. Chamkha, “Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate,” J. Ocean Eng. Sci., vol. 4, no. 3, pp. 263–275, 2019. DOI: 10.1016/j.joes.2019.05.002.
  • M. V. Krishna, K. Bharathi and A. J. Chamkha, “Hall effects on MHD peristaltic flow of Jeffrey fluid through porous medium in a vertical stratum,” Interfac. Phenom. Heat. Transf., vol. 6, no. 3, pp. 253–268, 2018. DOI: 10.1615/InterfacPhenomHeatTransfer.2019030215.
  • M. V. Krishna, K. Jyothi and A. J. Chamkha, “Heat and mass transfer on Mhd flow of second-grade fluid through porous medium over a semi-infinite vertical stretching sheet,” J. Por. Media, vol. 23, no. 8, pp. 751–765, 2020. DOI: 10.1615/JPorMedia.2020023817.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids-application in biomedical engineering,” J. Egypt Math. Soc., vol. 28, no. 1, pp. 1, 2020. DOI: 10.1186/s42787-019-0065-2.
  • M. V. Krishna and A. J. Chamkha, “Hall effects on MHD squeezing flow of a water-based nanofluid between two parallel disks,” J. Por. Media, vol. 22, no. 2, pp. 209–223, 2019. DOI: 10.1615/JPorMedia.2018028721.
  • J. Hasnain and N. Abid, “Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet,” Numer. Heat Transf. A Appl., vol. 83, no. 12, pp. 1365–1376, 2023. DOI: 10.1080/10407782.2022.2104582.
  • B. R. Behera, V. Chandrakar and J. R. Senapati, “Numerical analysis of combined free convection and radiation heat transfer from an open hemispherical cavity,” Numer. Heat Transf. A Appl., vol. 84, no. 9, pp. 1014–1031, 2023. DOI: 10.1080/10407782.2023.2169797.
  • S. O. Adesanya, L. Rundora and K. F. Thosago, “Numerical evaluation of heat irreversiblity in porous medium combustion of third-grade fluid subjected to Newtonian cooling,” Numer. Heat Transf. A Appl., vol. 84, no. 9, pp. 1091–1105, 2023. DOI: 10.1080/10407782.2023.2171520.
  • S. Vemulawada, P. Jayavel, A. Verma, K. Ghachem, L. Kolsi and K. Ramesh, “Thermal analysis on electromagnetic regulated peristaltic blood-based graphane/diamond nanofluid flow with entropy optimization,” Numer. Heat Transf. B Fundamental., vol. 84, no. 5, pp. 514–538, 2023. DOI: 10.1080/10407790.2023.2211731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.