66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pressure gradient and an upstream cylinder on nanofluid flow around a heated cylinder: Heat transfer and entropy analysis

, &
Received 30 Jun 2023, Accepted 31 Oct 2023, Published online: 22 Nov 2023

References

  • M. M. Alam, “A review of cylinder corner effect on flow and heat transfer,” J. Wind Eng. Ind. Aerodyn, vol. 229, pp. 105132, 2022. DOI: 10.1016/j.jweia.2022.105132.
  • T. Abdelhamid, M. M. Alam, and M. Islam, “Heat transfer and flow around cylinder: effect of corner radius and Reynolds number,” Int. J. Heat Mass Transf., vol. 171, pp. 121105, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121105.
  • M. R. Rastan, M. M. Alam, H. Zhu, and C. Ji, “Onset of vortex shedding from a bluff body modified from square cylinder to normal flat plate,” Ocean Eng., vol. 244, pp. 110393, 2022. DOI: 10.1016/j.oceaneng.2021.110393.
  • L. E. Olsen, J. P. Abraham, L. Cheng, J. M. Gorman, and E. M. Sparrow, “Summary of forced-convection fluid flow and heat transfer for square cylinders of different aspect ratios ranging from the cube to a two-dimensional cylinder,” Adv. Heat Transf., vol. 51, pp. 351–457, 2019.
  • K. Tatsutani, R. Devarakonda, and J. A. C. Humphrey, “Unsteady flow and heat transfer for cylinder pairs in a channel,” Int. J. Heat Mass Transf., vol. 36, no. 13, pp. 3311–3328, 1993. DOI: 10.1016/0017-9310(93)90013-V.
  • J. L. Rosales, A. Ortega, and J. A. Humphrey, “A numerical investigation of the convective heat transfer in unsteady laminar flow past a single and tandem pair of square cylinders in a channel,” Numer. Heat Trans. Part A, vol. 38, no. 5, pp. 443–465, 2000.
  • A. Valencia“Unsteady, “flow and heat transfer in a channel with a built-in tandem of rectangular cylinders,” Numer. Heat Trans. Part A, vol. 29, no. 6, pp. 613–623, 1996. DOI: 10.1080/10407789608913809.
  • A. Mashhadi, A. Sohankar, and M. M. Alam, “Flow over rectangular cylinder: effects of cylinder aspect ratio and Reynolds number,” Int. J. Mech. Sci., vol. 195, pp. 106264, 2021. DOI: 10.1016/j.ijmecsci.2020.106264.
  • W. Zhang, H. Yang, H. S. Dou, and Z. Zhu, “Forced convection of flow past two tandem rectangular cylinders in a channel,” Numer. Heat Trans. Part A, vol. 72, no. 1, pp. 89–106, 2017. DOI: 10.1080/10407782.2017.1353384.
  • Z. Zheng, M. M. Alam, Q. Zheng, S. Dhinakaran, and M. Islam, “Topology of flow and heat transfer from prisms in square array,” Int. J. Mech. Sci., vol. 220, pp. 107163, 2022. DOI: 10.1016/j.ijmecsci.2022.107163.
  • H. M. S. Bahaidarah, M. Ijaz, and N. K. Anand, “Numerical study of fluid flow and heat transfer over a series of inline noncircular tubes confined in a parallel–plate channel,” Numer. Heat Trans. Part B, vol. 50, no. 2, pp. 97–119, 2006. DOI: 10.1080/10407790600599041.
  • W. Zhang and X. Su, “Effects of stagnating and thermal shielding of an upstream promoter on forced convection of flow past a square cylinder in a channel,” Numer. Heat Trans. Part A, vol. 80, no. 1–2, pp. 1–21, 2021. DOI: 10.1080/10407782.2021.1930760.
  • J. Zhu, H. Chen, and X. Chen, “Large eddy simulation of vortex shedding and pressure fluctuation in aerostatic bearings,” J. Fluids Struct., vol. 40, pp. 42–51, 2013. DOI: 10.1016/j.jfluidstructs.2013.03.012.
  • U. Kashyap, A. Kumar, and S. K. Saha, “Study of effect of magnetic field on the axisymmetric vortices produced by a novel vortex generator in a rectangular channel using dynamic mode decomposition,” Phys. Fluids, vol. 32, no. 11, pp. 115111, 2020.
  • F. Zafar and M. M. Alam, “A low Reynolds number flow and heat transfer topology of a cylinder in a wake,” Phys. Fluids, vol. 30, no. 8, pp. 083603, 2018.
  • X. Sun, S. Li, G. G. Lin, and J. Z. Zhang, “Effects of flow-induced vibration on forced convection heat transfer from two tandem circular cylinders in laminar flow,” Int. J. Mech. Sci., vol. 195, pp. 106238, 2021. DOI: 10.1016/j.ijmecsci.2020.106238.
  • B. K. Khudhair, A. M. Saleh, and A. L. Ekaid, “Analysis of influence of vertical vibration on natural heat convection coefficients from horizontal concentric and eccentric annulus,” Pertanika J. Sci. Tech., vol. 31, no. 3, pp. 1555-1586, 2023.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf. Int. J., vol. 11, no. 2, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.
  • H. H. Ting and S. S. Hou, “Investigation of laminar convective heat transfer for Al2O3–water nanofluids flowing through a square cross–section duct with a constant heat flux,” Materials, vol. 8, no. 8, pp. 5321–5335, 2015. DOI: 10.3390/ma8085246.
  • R. S. Vajjha and D. K. Das, “A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power,” Int. J. Heat Mass Transf., vol. 55, no. 15–16, pp. 4063–4078, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.048.
  • N. C. Roy, L. K. Saha, and M. Sheikholeslami, “Heat transfer of a hybrid nanofluid past a circular cylinder in the presence of thermal radiation and viscous dissipation,” AIP Adv., vol. 10, no. 9, pp. 095208, 2020.
  • T. Tayebi and A. J. Chamkha, “Analysis of the effects of local thermal non-equilibrium (LTNE) on thermo-natural convection in an elliptical annular space separated by a nanofluid-saturated porous sleeve,” Int. Comm. Heat Mass Transf., vol. 129, pp. 105725, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105725.
  • R. D. Selvakumar and S. Dhinakaran, “Nanofluid flow and heat transfer around a circular cylinder: a study on effects of uncertainties in effective properties,” J. Mol. Liq., vol. 223, pp. 572–588, 2016. DOI: 10.1016/j.molliq.2016.08.047.
  • R. S. Rajpoot, S. Dhinakaran, and M. M. Alam, “Numerical analysis of mixed convective heat transfer from a square cylinder utilizing nanofluids with multi–phase modelling approach,” Energies, vol. 14, no. 17, pp. 5485, 2021. DOI: 10.3390/en14175485.
  • K. S. Arjun and K. Rakesh, “Heat transfer in magnetohydrodynamic nanofluid flow past a circular cylinder,” Phys. Fluids, vol. 32, no. 4, pp. 045112, 2020.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • S. Sarkar, S. Ganguly, and A. Dalal, “Analysis of entropy generation during mixed convective heat transfer of nanofluids past a square cylinder in vertically upward flow,” J. Heat Transf., vol. 134, no. 12, pp. 122501, 2012.
  • S. Sarkar, S. Ganguly, and A. Dalal, “Analysis of entropy generation during mixed convective heat transfer of nanofluids past a rotating circular cylinder,” J. Heat Transf., vol. 136, no. 6, pp. 062501, 2014.
  • S. Mohamad, S. K. Rout, J. R. Senapati, and S. K. Sarangi, “Entropy generation analysis and cooling time estimation of a blast furnace in natural convection environment,” Numer. Heat Trans. Part A, vol. 82, no. 10, pp. 666–681, 2022. DOI: 10.1080/10407782.2022.2083861.
  • S. Bezi, B. Souayeh, N. B. Cheikh, and B. B. Beya, “Numerical simulation of entropy generation due to unsteady natural convection in a semi–annular enclosure filled with nanofluid,” Int. J. Heat Mass Transf., vol. 124, pp. 841–859, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.109.
  • D. Nouri, M. P. Fard, M. J. Oboodi, O. Mahian, and A. Z. Sahin, “Entropy generation analysis of nanofluid flow over a spherical heat source inside a channel with sudden expansion and contraction,” Int. J. Heat Mass Transf., vol. 116, pp. 1036–1043, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.097.
  • D. Bhowmick, P. R. Randive, S. Pati, H. Agrawal, A. Kumar, and P. Kumar, “Natural convection heat transfer and entropy generation from a heated cylinder of different geometry in an enclosure with non-uniform temperature distribution on the walls,” J. Therm. Anal. Calorim., vol. 141, no. 2, pp. 839–857, 2020. DOI: 10.1007/s10973-019-09054-2.
  • P. Mondal, D. K. Maiti, G. C. Shit, and G. Ibáñez, “Heat transfer and entropy generation in a MHD Couette–Poiseuille flow through a microchannel with slip, suction–injection and radiation,” J. Therm. Anal. Calorim., vol. 147, no. 6, pp. 4253–4273, 2022. DOI: 10.1007/s10973-021-10731-4.
  • D. K. Maiti and R. Bhatt, “Interactions of vortices of a square cylinder and a rectangular vortex generator under Couette–Poiseuille flow,” J. Fluids Eng., vol. 137, no. 5, pp. 051203, 2015.
  • D. K. Maiti, “Dependence of flow characteristics of rectangular cylinders near a wall on the incident velocity,” Acta Mech., vol. 222, no. 3–4, pp. 273–286, 2011. DOI: 10.1007/s00707-011-0527-6.
  • D. K. Maiti, “Numerical study on aerodynamic characteristics of rectangular cylinders near a wall,” Ocean Eng., vol. 54, pp. 251–260, 2012. DOI: 10.1016/j.oceaneng.2012.07.012.
  • R. J. Yang and L. M. Fu, “Thermal and flow analysis of a heated electronic component,” Int. J. Heat Mass Transf., vol. 44, no. 12, pp. 2261–2275, 2001. DOI: 10.1016/S0017-9310(00)00265-9.
  • L. C. Hsu and C. W. Liang, “Heat transfer in flow past two cylinders in tandem and enhancement with a slit,” Energies, vol. 14, no. 2, pp. 308, 2021. DOI: 10.3390/en14020308.
  • D. K. Maiti, R. Bhatt, and M. M. Alam, “Aerodynamic forces on square cylinder due to secondary flow by rectangular vortex generator in offset tandem: comparison with inline,” Comput. Fluids, vol. 134–135, pp. 157–176, 2016. DOI: 10.1016/j.compfluid.2016.05.005.
  • S. Sharma, D. K. Maiti, M. M. Alam, and B. K. Sharma, “Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette–Poiseuille flow,” Wind Struct., vol. 29, no. 1, pp. 65–75, 2019.
  • D. K. Maiti and S. Sharma, “Roles of nanofluids, temperature of base fluids, and pressure gradient on heat transfer enhancement from a cylinder: uniformly heated/heat flux,” J. Heat Transf., vol. 141, no. 6, pp. 062402, 2019.
  • S. Sharma, D. K. Maiti, M. M. Alam, and B. K. Sharma, “Nanofluid (H2O−−Al2O3/CuO) flow over a heated square cylinder near a wall under the incident of Couette flow,” J. Mech. Sci. Technol., vol. 32, no. 2, pp. 659–670, 2018. DOI: 10.1007/s12206-018-0113-5.
  • S. Bhattacharyya, D. K. Maiti, and S. Dhinakaran, “Influence of buoyancy on vortex shedding and heat transfer from a square cylinder in proximity to a wall,” Numer. Heat Trans. Part A, vol. 50, no. 6, pp. 585–606, 2006. DOI: 10.1080/10407780600867761.
  • D. K. Maiti and R. Bhatt, “Numerical study on flow and aerodynamic characteristics: square cylinder and eddy-promoting rectangular cylinder in tandem near wall,” Aerosp. Sci. Technol., vol. 36, pp. 5–20, 2014. DOI: 10.1016/j.ast.2014.03.012.
  • V. Etminan, E. E. Bajestan, H. Niazmand, and S. Wongwises, “Unconfined laminar nanofluid flow and heat transfer around a square cylinder,” Int. J. Heat Mass Transf., vol. 55, no. 5–6, pp. 1475–1485, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.030.
  • D. Chatterjee and B. Mondal, “Forced convection heat transfer from tandem square cylinders for various spacing ratios,” Numer. Heat Trans. Part A, vol. 61, no. 5, pp. 381–400, 2012. DOI: 10.1080/10407782.2012.647985.
  • A. Sohankar and A. Etminan, “Forced‐convection heat transfer from tandem square cylinders in cross flow at low Reynolds numbers,” Int. J. Numer. Meth. Fluids, vol. 60, no. 7, pp. 733–751, 2009. DOI: 10.1002/fld.1909.
  • L. Wang, M. M. Alam, and Y. Zhou, “Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics,” J. Fluid Mech., vol. 836, pp. 5–42, 2018. DOI: 10.1017/jfm.2017.735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.