72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of triangular spoilers on the performance of serpentine solar air heaters

, ORCID Icon, , ORCID Icon, , & show all
Received 07 Jun 2023, Accepted 02 Nov 2023, Published online: 20 Nov 2023

References

  • W. Ke et al., “Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China,” Energy, vol. 235, pp. 121359, 2021. DOI: 10.1016/j.energy.2021.121359.
  • C. S. Meena, B. P. Raj, L. Saini, N. Agarwal, and A. Ghosh, “Performance optimization of solar-assisted heat pump system for water heating applications,” Energies, vol. 14, no. 12, pp. 3534, 2021. DOI: 10.3390/en14123534.
  • V. K. Chauhan, S. K. Shukla, J. V. Tirkey, and P. K. Singh Rathore, “A comprehensive review of direct solar desalination techniques and its advancements,” J. Clean. Prod., vol. 284, pp. 124719, 2021. DOI: 10.1016/j.jclepro.2020.124719.
  • A. Khanlari et al., “Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber,” Sci. Total Environ., vol. 709, pp. 136198, 2020. DOI: 10.1016/j.scitotenv.2019.136198.
  • A. Bejan, T. Catalina, D. Barbu Mocănescu, and A. Ene, “Experimental study of an innovative glazed solar air collector tested in real conditions,” E3S Web Conf., vol. 85, pp. 04007, 2019. DOI: 10.1051/e3sconf/20198504007.
  • L. Wang, “Research on the collect heat performance of new type collector,” Energy Sources Part A Recov. Util. Environ. Effects, vol. 44, no. 4, pp. 9412–9427, 2022. DOI: 10.1080/15567036.2021.1954729.
  • A. Kumar, A. P. Singh, Akshayveer, and O.P. Singh, “Performance characteristics of a new curved double-pass counter flow solar air heater,” Energy, vol. 239, p. 121886, 2022. DOI: 10.1016/j.energy.2021.121886.
  • H. Parlamış, E. Özden, and M. S. Büker, “Experimental performance analysis of a parabolic trough solar air collector with helical-screw tape insert: a comparative study,” Sustain. Energy Technol. Assess., vol. 47, pp. 101562, 2021. DOI: 10.1016/j.seta.2021.101562.
  • A. Kumar and M. Kim, “Solar air-heating system with packed-bed energy-storage systems,” Renew. Sustain. Energy Rev., vol. 72, pp. 215–227, 2017. DOI: 10.1016/j.rser.2017.01.050.
  • A. S. T. Tan, J. Janaun, H. J. Tham, N. J. Siambun, and A. Abdullah, “Performance enhancement of a baffle-type solar heat collector through CFD simulation study,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1195, no. 1, pp. 012040, 2021. DOI: 10.1088/1757-899X/1195/1/012040.
  • S. Shamekhi-Amiri, T. B. Gorji, M. Gorji-Bandpy, and M. Jahanshahi, “Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system,” Case Stud. Therm. Eng., vol. 12, pp. 677–686, 2018. DOI: 10.1016/j.csite.2018.08.007.
  • B. Jia, F. Liu, and D. Wang, “Experimental study on the performance of spiral solar air heater,” Sol. Energy, vol. 182, pp. 16–21, 2019. DOI: 10.1016/j.solener.2019.02.033.
  • B. Jia, F. Liu, X. Li, A. Qu, and Q. Cai, “Influence on thermal performance of spiral solar air heater with longitudinal baffles,” Sol. Energy, vol. 225, pp. 969–977, 2021. DOI: 10.1016/j.solener.2021.08.004.
  • K. Kumar and A. Debbarma, “Performance investigation of sinusoidal corrugated absorber plate solar air heater,” J. Phys. Conf. Ser., vol. 2178, no. 1, pp. 012014, 2022. DOI: 10.1088/1742-6596/2178/1/012014.
  • V. Madadi Avargani, S. Zendehboudi, A. Rahimi, and S. Soltani, “Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles,” Appl. Therm. Eng., vol. 203, pp. 117907, 2022. DOI: 10.1016/j.applthermaleng.2021.117907.
  • V. P. Singh et al., “Recent developments and advancements in solar air heaters: a detailed review,” Sustainability, vol. 14, no. 19, pp. 12149, 2022. DOI: 10.3390/su141912149.
  • S. Sharma, R. K. Das, and K. Kulkarni, “Computational and experimental assessment of solar air heater roughened with six different baffles,” Case Stud. Therm. Eng., vol. 27, pp. 101350, 2021. DOI: 10.1016/j.csite.2021.101350.
  • R. Vijayakumar, R. Harichandran, R. J. Venkatesh, and P. Ramanan, “Experimental study on the thermal performance of a solar air heater integrated with multi-geometry arrangements over the absorber plate,” Environ. Sci. Pollut. Res. Int., vol. 29, no. 25, pp. 38331–38345, 2022. DOI: 10.1007/S11356-022-18830-X.
  • A. A. Farhan, H. E. Ahmed, and M. A. Mussa, “Thermal–hydraulic performance of a V-groove solar air collector with transverse wedge-shaped ribs,” Arab. J. Sci. Eng., vol. 47, no. 7, pp. 8915–8930, 2022. DOI: 10.1007/s13369-021-06442-5.
  • H. Singh, H. Singh, R. Bahuguna, and C. Kishore, “CFD analysis of heat transfer characteristics of rectangular solar air heater with kite shaped roughness,” Materials Today Proc., vol. 52, pp. 2014–2025, 2022. DOI: 10.1016/j.matpr.2021.12.008.
  • P. J. Bezbaruah, R. S. Das, and B. K. Sarkar, “Experimental and numerical analysis of solar air heater accoutered with modified conical vortex generators in a staggered fashion,” Renew. Energy, vol. 180, pp. 109–131, 2021. DOI: 10.1016/j.renene.2021.08.046.
  • S. V. Pratap, J. Siddharth, and J. M. L. G, “Analysis of the effect of perforation in multi-v rib artificial roughened single pass solar air heater: - Part A,” Exp. Heat Transf., vol. 36, no. 2, pp. 163–182, 2023. DOI: 10.1080/08916152.2021.1988761.
  • V. P. Singh et al., “Heat transfer and friction factor correlations development for double pass solar air heater artificially roughened with perforated multi-V ribs,” Case Stud. Therm. Eng., vol. 39, pp. 102461, 2022. DOI: 10.1016/j.csite.2022.102461.
  • M. H. Machi, M. A. Al-Neama, J. Buzás, and I. Farkas, “Energy-based performance analysis of a double pass solar air collector integrated to triangular shaped fins,” Int. J. Energy Environ. Eng., vol. 13, no. 1, pp. 219–229, 2022. DOI: 10.1007/s40095-021-00422-z.
  • S. Abo-Elfadl, M. F. El-Dosoky, and H. Hassan, “Energy and exergy assessment of new designed solar air heater of V-shaped transverse finned absorber at single- and double-pass flow conditions,” Environ. Sci. Pollut. Res. Int., vol. 28, no. 48, pp. 69074–69092, 2021. DOI: 10.1007/s11356-021-15163-Z.
  • G. Sureandhar, G. Srinivasan, P. Muthukumar, and S. Senthilmurugan, “Performance analysis of arc rib fin embedded in a solar air heater,” Therm. Sci. Eng. Prog., vol. 23, pp. 100891, 2021. DOI: 10.1016/j.tsep.2021.100891.
  • E. Deniz and S. Çınar, “Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification,” Energy Conv. Manag., vol. 126, pp. 12–19, 2016. DOI: 10.1016/j.enconman.2016.07.064.
  • S. F. Moosavian, D. Borzuei, and A. Ahmadi, “Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions,” Renew. Energy, vol. 165, pp. 301–320, 2021. DOI: 10.1016/j.renene.2020.11.036.
  • S. K. Sharma and V. R. Kalamkar, “Experimental and numerical investigation of forced convective heat transfer in solar air heater with thin ribs,” Sol. Energy, vol. 147, pp. 277–291, 2017. DOI: 10.1016/j.solener.2017.03.042.
  • S. Singh, A. Singh, and S. Chander, “Thermal performance of a fully developed serpentine wavy channel solar air heater,” J. Energy Storage, vol. 25, pp. 100896, 2019. DOI: 10.1016/j.est.2019.100896.
  • V. B. Gawande, A. S. Dhoble, D. B. Zodpe, and S. Chamoli, “Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs,” Sol. Energy, vol. 131, pp. 275–295, 2016. DOI: 10.1016/j.solener.2016.02.040.
  • M. Abuşka, S. Şevik, and A. Kayapunar, “Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection,” Sol. Energy Mater. Sol. Cells, vol. 195, pp. 299–308, 2019. DOI: 10.1016/j.solmat.2019.02.040.
  • B. Jia et al., “Optimizing structure of baffles on thermal performance of spiral solar air heaters,” Sol. Energy, vol. 224, pp. 757–764, 2021. DOI: 10.1016/j.solener.2021.06.043.
  • S. A. Klein, “Calculation of flat-plate collector loss coefficients,” Sol. Energy, vol. 17, no. 1, pp. 79–80, 1975. DOI: 10.1016/0038-092X(75)90020-1.
  • M. Abuşka and S. Şevik, “Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper,” Sol. Energy, vol. 158, pp. 259–277, 2017. DOI: 10.1016/j.solener.2017.09.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.