59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cattaneo–Christov double diffusive non-Newtonian nanofluid flow over a rotating disk of variable thickness influenced by swimming microorganisms and velocity slip condition

, ORCID Icon, &
Received 11 Jul 2023, Accepted 10 Nov 2023, Published online: 24 Nov 2023

References

  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29),” presented at the Argonne National Lab., IL United States,1995.
  • M. Turkyilmazoglu, “Nanofluid flow and heat transfer due to a rotating disk,” Comput. Fluids, vol. 94, pp. 139–146, 2014. DOI: 10.1016/j.compfluid.2014.02.009.
  • Y. Zhang, N. Shahmir, M. Ramzan, H. Alotaibi, and H. M. Aljohani, “Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with cattaneo-christov heat flux,” Case Stud. Therm. Eng., vol. 26, pp. 101149, 2021. DOI: 10.1016/j.csite.2021.101149.
  • M. Khan, J. Ahmed, W. Ali, and S. Nadeem, “Chemically reactive swirling flow of viscoelastic nanofluid due to rotating disk with thermal radiations,” Appl. Nanosci., vol. 10, no. 12, pp. 5219–5232, 2020. DOI: 10.1007/s13204-020-01400-3.
  • T. Hayat, T. Muhammad, S. A. Shehzad, and A. Alsaedi, “On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: a numerical study,” Comput. Methods Appl. Mech. Eng., vol. 315, pp. 467–477, 2017. DOI: 10.1007/s13204-020-01400-3.
  • R. Naz, F. Mabood, M. Sohail, and I. Tlili, “Thermal and species transportation of Eyring-Powell material over a rotating disk with swimming microorganisms: applications to metallurgy,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 5577–5590, 2020. DOI: 10.1016/j.jmrt.2020.03.082.
  • K. A. M. Alharbi, S. Riasat, M. Ramzan, and S. Kadry, “Role of surface catalyzed reaction in the flow of temperature-dependent viscosity fluid over a rotating disk,” Numer. Heat Transfer Part A: Appl., vol. 84, no. 10, pp. 1169–1190, 2023. DOI: 10.1080/10407782.2023.2173344.
  • N. Islam et al., “Thermal efficiency appraisal of hybrid nanocomposite flow over an inclined rotating disk exposed to solar radiation with Arrhenius activation energy,” Alex. Eng. J., vol. 68, pp. 721–732, 2023. DOI: 10.1016/j.aej.2022.12.029.
  • P. Kumar et al., “Significance of irregular heat source and Arrhenius energy on electro-magnetohydrodynamic hybrid nanofluid flow over a rotating stretchable disk with nonlinear radiation,” Numer. Heat. Transfer Part A: Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2212130.
  • T. Oreyeni, K. Ramesh, M. K. Nayak, and P. A. Oladele, “Triple stratification impacts on an inclined hydromagnetic bioconvective flow of micropolar nanofluid with exponential space-based heat generation,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2112994.
  • K. Das, B. Sutradhar, and P. K. Kundu, “Impact of nonlinear radiation on an unsteady magneto hybrid nanofluid flow over an upward/downward rotating disk,” Numer. Heat Transfer Part A: Appl., pp. 1–18, 2023. DOI: 10.1080/10407782.2023.2228477.
  • B. Souayeh and K. Ramesh, “Numerical scrutinization of ternary nanofluid flow over an exponentially stretching sheet with gyrotactic microorganisms,” Mathematics, vol. 11, no. 4, pp. 981, 2023. DOI: 10.3390/math11040981.
  • H. Upreti, Z. Uddin, A. K. Pandey, and N. Joshi, “Particle swarm optimization based numerical study for pressure, flow, and heat transfer over a rotating disk with temperature dependent nanofluid properties,” Numer. Heat Transfer Part A: Appl., vol. 83, no. 8, pp. 815–844, 2023. DOI: 10.1080/10407782.2022.2156412.
  • H. Waqas, M. Imran, T. Muhammad, S. M. Sait, and R. Ellahi, “Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk,” J. Therm. Anal. Calorim., vol. 145, no. 2, pp. 523–539, 2021. DOI: 10.1007/s10973-020-09728-2.
  • M. Z. Ullah and T. S. Jang, “An efficient numerical scheme for analyzing bioconvection in von-Kármán flow of third-grade nanofluid with motile microorganisms,” Alex. Eng. J., vol. 59, no. 4, pp. 2739–2752, 2020. DOI: 10.1016/j.aej.2020.05.017.
  • D. Abuzaid and M. Z. Ullah, “Numerical simulation for bio-convective flow of Sutterby nanofluid by a rotating disk,” Phys. Scr., vol. 96, no. 8, pp. 084007, 2021. DOI: 10.1088/1402-4896/ac0032.
  • K. Al-Khaled, S. U. Khan, and I. Khan, “Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation,” Heliyon, vol. 6, no. 1, pp. e03117, 2020. DOI: 10.1016/j.heliyon.2019.e03117.
  • T. Hussain, H. Xu, A. Raees, and Q. K. Zhao, “Unsteady three-dimensional MHD flow and heat transfer in porous medium suspended with both microorganisms and nanoparticles due to rotating disks,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1607–1619, 2022. DOI: 10.1007/s10973-020-10528-x.
  • M. Naveed Khan, S. Ahmad, N. A. Ahammad, T. Alqahtani, and S. Algarni, “Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk,” Waves Random Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2055205.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Bioconvective flow of a variable properties hybrid nanofluid over a spinning disk with Arrhenius activation energy, Soret and Dufour impacts,” Numer. Heat Transfer Part A: Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2193709.
  • K. A. M. Alharbi, N. Shahmir, M. Ramzan, M. Y. Almusawa, and S. Kadry, “Bioconvective radiative unsteady Casson nanofluid flow across two concentric stretching cylinders with variable viscosity and variable thermal conductivity,” Numer. Heat Transfer Part A: Appl., pp. 1–18, 2023. DOI: 10.1080/10407782.2023.2208733.
  • S. Hussain, F. Ertam, M. B. B. Hamida, H. F. Oztop, and N. H. Abu-Hamdeh, “Analysis of bioconvection and oxytactic microorganisms in a porous cavity with nano-enhanced phase change materials and quadrant heater: application of support vector regression-based model,” J. Energy Storage, vol. 63, pp. 107059, 2023. DOI: 10.1016/j.est.2023.107059.
  • S. Hussain, F. Ertam, M. B. B. Hamida, H. F. Oztop, and N. H. Abu-Hamdeh, “Passive control of, energy storage of NePCM, heat and mass transfer with gamma-shaped baffle in a hermos-bioconvection system using CFD and artificial intelligence,” ICHMT, vol. 144, no. 144, 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106764.
  • Y. D. Sharma and O. P. Yadav, “Stability analysis of double diffusive hermos-bioconvection in aerobic-microorganism-suspended Casson nanofluid,” Eur. Phys. J. Plus, vol. 137, no. 6, pp. 1–13, 2022. DOI: 10.1140/epjp/s13360-022-02895-1.
  • A. Bisht and S. Maheshwari, “Thermo-bioconvection in nanoliquid suspension saturated with thermotactic microorganisms,” Forces Mech., vol. 9, pp. 100128, 2022. DOI: 10.1016/j.finmec.2022.100128.
  • R. Sharma and   Sanjalee, “Analysis of magneto-thermo-bioconvection of nanofluid containing gyrotactic microorganisms through porous media,” J. Nanofluids, vol. 11, no. 6, pp. 979–987, 2022. DOI: 10.1166/jon.2022.1894.
  • P. Jayavel, M. Ramzan, S. Saleem, A. Verma, and K. Ramesh, “Homotopy analysis on the bio-inspired radiative magnesium and iron oxides/blood nanofluid flow over an exponential stretching sheet,” Comput. Part. Mech, vol. 10, pp. 1–21, 2023. DOI: 10.1007/s40571-023-00600-2.
  • Z. Abbas, A. Rauf, S. A. Shehzad, and M. Alghamdi, “Cattaneo-Christov heat and mass flux models on time-dependent swirling ow through oscillatory rotating disk,” Sci. Iran, vol. 28, no. 31, pp. 329–1341, 2021. DOI: 10.24200/SCI.2020.53248.3139.
  • F. Mabood, J. Mackolil, B. S. E. P. Mahanthesh, A. Rauf, and S. A. Shehzad, “Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models,” Appl. Math. Mech. Engl. Ed, vol. 42, no. 9, pp. 1247–1258, 2021. DOI: 10.1007/s10483-021-2770-9.
  • A. Hafeez and M. Khan, “Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption,” ICHMT, vol. 123, no. 123, pp. 105179, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105179.
  • S. A. Shehzad, M. G. Reddy, A. Rauf, and Z. Abbas, “Bioconvection of Maxwell nanofluid under the influence of double diffusive Cattaneo–Christov theories over isolated rotating disk,” Phys. Scr., vol. 95, no. 4, pp. 045207, 2020. DOI: 10.1088/1402-4896/ab5ca7.
  • T. Hayat et al., “Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface,” ICHMT, vol. 99, no. 99, pp. 702–710, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.016.
  • P. S. Reddy, P. Sreedevi, and A. J. Chamkha, “Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux,” J. Therm. Anal. Calorim., vol. 147, pp. 1–16, 2021. DOI: 10.1007/s10973-021-10586-9.
  • S. Hussain, H. F. Öztop, M. A. Qureshi, and N. Abu-Hamdeh, “Double diffusive buoyancy induced convection in stepwise open porous cavities filled nanofluid,” ICHMT, vol. 119, pp. 104949, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104949.
  • A. Shahzad et al., “Brownian motion and thermophoretic diffusion impact on Darcy-Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo-Christov heat flux,” Alex. Eng. J., vol. 62, pp. 1–15, 2023. DOI: 10.1016/j.aej.2022.07.023.
  • M. Ramzan, N. Shahmir, H. A. S. Ghazwani, Y. Elmasry, and S. Kadry, “A numerical study of nanofluid flow over a curved surface with Cattaneo–Christov heat flux influenced by induced magnetic field,” Numer. Heat Transfer Part A: Appl., vol. 83, no. 2, pp. 197–212, 2023. DOI: 10.1080/10407782.2022.2144976.
  • H. Zeb et al., “Cattaneo–Christov heat flux modeling in nanofliuid TiO2–titanium oxide and aggregation nanoparticle flow between two rotating disks,” Waves Random Complex Media, pp. 1–21, 2023. DOI: 10.1080/17455030.2023.2193850.
  • S. Xun, J. Zhao, L. Zheng, X. Chen, and X. Zhang, “Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing,” ICHMT, vol. 103, pp. 1214–1224, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.066.
  • T. Hayat, M. Rashid, M. Imtiaz, and A. Alsaedi, “Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions,” ICHMT, vol. 113, pp. 96–105, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.018.
  • H. I. Andersson, E. de Korte, and R. Meland, “Flow of a power-law fluid over a rotating disk revisited,” Fluid Dyn. Res., vol. 28, no. 2, pp. 75–88, 2001. DOI: 10.1016/S0169-5983(00)00018-6.
  • C. Ming, L. Zheng, and X. Zhang, “Steady flow and heat transfer of the power-law fluid over a rotating disk,” ICHMT, vol. 38, no. 3, pp. 280–284, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.11.013.
  • M. Ramzan et al., “Influence of autocatalytic chemical reaction with heterogeneous catalysis in the flow of Ostwald-de-Waele nanofluid past a rotating disk with variable thickness in porous media,” ICHMT, vol. 128, pp. 105653, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.