57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mixed convective flow of nanofluid across exponential surface: A numerical assessment of the impact of Darcy-Forchheimer and nanoparticle aggregation

ORCID Icon &
Received 25 May 2023, Accepted 20 Nov 2023, Published online: 27 Nov 2023

References

  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspension,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001. DOI: 10.1063/1.1408272.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Argonne National Lab., Lemont, IL, 1995.
  • R. J. Punith Gowda, I. E. Sarris, R. Naveen Kumar, R. Kumar and B. C. Prasannakumara, “A three-dimensional non-Newtonian magnetic fluid flow induced due to stretching of the flat surface with chemical reaction,” J. Heat Transfer, vol. 144, no. 11, p. 113602, 2022.
  • Y.-X. Li, et al., “Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with entropy generation: applications to renewable energy,” Chin. J. Phys., vol. 73, pp. 275–287, 2021. DOI: 10.1016/j.cjph.2021.06.004.
  • J. K. Madhukesh, I. E. Sarris, B. C. Prasannakumara and A. Abdulrahman, “Investigation of thermal performance of ternary hybrid nanofluid flow in a permeable inclined cylinder/plate,” Energies, vol. 16, no. 6, p. 2630, 2023. DOI: 10.3390/en16062630.
  • K. Sarada, et al., “Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model,” Case Stud. Therm. Eng., vol. 38, p. 102332, 2022. DOI: 10.1016/j.csite.2022.102332.
  • B. R. Sreenivasa, A. J. Faqeeh, A. Alsaiari, H. A. H. Alzahrani, and M. Y. Malik, “Numerical study of heat transfer mechanism in the flow of ferromagnetic hybrid nanofluid over a stretching cylinder,” Waves in Random and Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2061084.
  • Z. Mahmood, S. M. Eldin, K. Rafique and U. Khan, “Numerical analysis of MHD tri-hybrid nanofluid over a nonlinear stretching/shrinking sheet with heat generation/absorption and slip conditions,” Alexandria Eng. J., vol. 76, pp. 799–819, 2023. DOI: 10.1016/j.aej.2023.06.081.
  • A. Mishra and G. Pathak, “A comparative analysis of MoS2-SiO2/H2O hybrid nanofluid and MoS2-SiO2-GO/H2O ternary hybrid nanofluid over an inclined cylinder with heat generation/absorption,” Numer. Heat Transf. Part A Appl., pp. 1–30, 2023. DOI: 10.1080/10407782.2023.2228483.
  • G. Revathi, I. L. Animasaun, V. S. Sajja, M. Jayachandra Babu, N. Boora and C. S. K. Raju, “Significance of adding titanium dioxide nanoparticles to an existing distilled water conveying aluminum oxide and zinc oxide nanoparticles: scrutinization of chemical reactive ternary-hybrid nanofluid due to bioconvection on a convectively heated surface,” Nonlinear Eng., vol. 11, no. 1, pp. 241–251, 2022. DOI: 10.1515/nleng-2022-0031.
  • R. Giti, M. Firouzmandi, N. Zare Khafri and E. Ansarifard, “Influence of different concentrations of titanium dioxide and copper oxide nanoparticles on water sorption and solubility of heat‐cured PMMA denture base resin,” Clin. Exp. Dent. Res., vol. 8, no. 1, pp. 287–293, 2022. DOI: 10.1002/cre2.527.
  • B. Ali, S. Jubair, D. Fathima, A. Akhter, K. Rafique and Z. Mahmood, “MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects,” Sci. Prog., vol. 106, no. 2, p. 368504231176151, 2023. DOI: 10.1177/00368504231176151.
  • B. Ali, S. Jubair, L. A. Al-Essa, Z. Mahmood, A. Al-Bossly and F. S. Alduais, “Boundary layer and heat transfer analysis of mixed convective nanofluid flow capturing the aspects of nanoparticles over a needle,” Mater. Today Commun., vol. 35, p. 106253, 2023. DOI: 10.1016/j.mtcomm.2023.106253.
  • A. Alhadhrami, et al., “Impact of thermophoretic particle deposition on Glauert wall jet slip flow of nanofluid,” Case Stud. Therm. Eng., vol. 28, p. 101404, 2021. DOI: 10.1016/j.csite.2021.101404.
  • M. D. Alsulami, M. C. Jayaprakash, J. K. Madhukesh, G. Sowmya and R. N. Kumar, “Bioconvection in radiative Glauert wall jet flow of nanofluid: A Buongiorno model,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2128224.
  • H. Xie, M. Fujii and X. Zhang, “Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture,” Int. J. Heat Mass Transf., vol. 48, no. 14, pp. 2926–2932, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.040.
  • R. Prasher, P. E. Phelan and P. Bhattacharya, “Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid),” Nano Lett., vol. 6, no. 7, pp. 1529–1534, 2006. DOI: 10.1021/nl060992s.
  • H. Chen, Y. Ding, Y. He and C. Tan, “Rheological behaviour of ethylene glycol based titania nanofluids,” Chem. Phys. Lett., vol. 444, no. 4–6, pp. 333–337, 2007. DOI: 10.1016/j.cplett.2007.07.046.
  • M. Sedighi and A. Mohebbi, “Investigation of nanoparticle aggregation effect on thermal properties of nanofluid by a combined equilibrium and non-equilibrium molecular dynamics simulation,” J. Mol. Liq., vol. 197, pp. 14–22, 2014. DOI: 10.1016/j.molliq.2014.04.019.
  • S. Zeinali Heris, M. A. Razbani, P. Estellé and O. Mahian, “Rheological behavior of zinc-oxide nanolubricants,” J. Dispers. Sci. Technol., vol. 36, no. 8, pp. 1073–1079, 2015. DOI: 10.1080/01932691.2014.945595.
  • M. Motevasel, A. R. S. Nazar and M. Jamialahmadi, “The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: Experimental and theoretical evaluations,” Heat Mass Transfer, vol. 54, no. 1, pp. 125–133, 2018. DOI: 10.1007/s00231-017-2116-2.
  • J. Mackolil and B. Mahanthesh, “Sensitivity analysis of Marangoni convection in TiO2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2085–2098, 2021. DOI: 10.1007/s10973-020-09642-7.
  • L. T. Benos, E. G. Karvelas and I. E. Sarris, “Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection,” Therm. Sci. Eng. Prog., vol. 11, pp. 263–271, 2019. DOI: 10.1016/j.tsep.2019.04.007.
  • F. Wang, et al., “The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone,” Case Stud. Therm. Eng., vol. 33, p. 101930, 2022. DOI: 10.1016/j.csite.2022.101930.
  • M. D. Alsulami, A. Abdulrahman, R. N. Kumar, R. J. Punith Gowda and B. C. Prasannakumara, “Three-dimensional swirling flow of nanofluid with nanoparticle aggregation kinematics using modified Krieger–Dougherty and Maxwell–Bruggeman models: a finite element solution,” Mathematics, vol. 11, no. 9, p. 2081, 2023. DOI: 10.3390/math11092081.
  • B. M. Makhdoum, Z. Mahmood, U. Khan, B. M. Fadhl, I. Khan and S. M. Eldin, “Impact of suction with nanoparticles aggregation and joule heating on unsteady MHD stagnation point flow of nanofluids over horizontal cylinder,” Heliyon, vol. 9, no. 4, p. e15012, 2023. DOI: 10.1016/j.heliyon.2023.e15012.
  • K. A. M. Alharbi, Adnan, A. Nadeem, and S. M. Eldin, “Heat transport mechanism in glycerin-titania nanofluid over a permeable slanted surface by considering nanoparticles aggregation and Cattaneo Christov thermal flux,” Sci. Prog., vol. 106, no. 2, p. 00368504231180032, 2023. DOI: 10.1177/00368504231180032.
  • J. K. Madhukesh, B. C. Prasannakumara, U. Khan, S. Madireddy, Z. Raizah and A. M. Galal, “Time-dependent stagnation point flow of water conveying titanium dioxide nanoparticle aggregation on rotating sphere object experiencing thermophoresis particle deposition effects,” Energies, vol. 15, no. 12, pp. 4424, 2022. DOI: 10.3390/en15124424.
  • K. A. M., Alharbi, M. Z. Bani-Fwaz, S. M. Eldin, M. F. Yassen, “Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel,” Case Stud. Therm. Eng., vol. 41, p. 102568, 2023. DOI: 10.1016/j.csite.2022.102568.
  • T. Altan, S.-I. Oh and G. Gegel, “Metal forming fundamentals and applications,” Am. Soc. Met, vol. 1983, p. 353, 1983.
  • W. Michaeli and C. Hopmann, Extrusion Dies for Plastics and Rubber. Munich, Germany: Hanser Publishers, 2016.
  • M. V. Karwe and Y. Jaluria, “Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing,” ASME. J. Heat Transfer., vol. 113, no. 3, pp. 612–619, 1991. DOI: 10.1115/1.2910609.
  • B. C. Sakiadis, “Boundary‐layer behavior on continuous solid surfaces: i. Boundary‐layer equations for two‐dimensional and axisymmetric flow,” AIChE J., vol. 7, no. 1, pp. 26–28, 1961. DOI: 10.1002/aic.690070108.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys., vol. 21, no. 4, pp. 645–647, Jul. 1970. DOI: 10.1007/BF01587695.
  • E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” J. Phys. D: appl. Phys., vol. 32, no. 5, pp. 577–585, 1999. DOI: 10.1088/0022-3727/32/5/012.
  • E. M. A. Elbashbeshy, “Heat transfer over an exponentially stretching continuous surface with suction,” Arch. Mech., vol. 53, no. 6, pp. 643–651, 2001.
  • N. S. Anuar, N. Bachok, N. M. Arifin and H. Rosali, “Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis,” CFD Lett., vol. 11, no. 12, pp. 21–33, 2019.
  • I. Waini, I. Pop, S. A. Bakar, and A. Ishak, “Stagnation point flow toward an exponentially shrinking sheet in a hybrid nanofluid,” Int. J. Numer. Methods Heat Fluid Flow, 2021.
  • A. Islam, Z. Mahmood and U. Khan, “Double-diffusive stagnation point flow over a vertical surface with thermal radiation: assisting and opposing flows,” Sci. Prog., vol. 106, no. 1, pp. 368504221149798, 2023. DOI: 10.1177/00368504221149798.
  • S. V. Subhashini, R. Sumathi and E. Momoniat, “Dual solutions of a mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids,” Meccanica, vol. 49, no. 10, pp. 2467–2478, 2014. DOI: 10.1007/s11012-014-0016-9.
  • Z. Mahmood and U. Khan, “Mathematical investigation of nanoparticle aggregation and heat transfer on mixed convective stagnation point flow of nanofluid over extendable vertical Riga plate,” Phys. Scr., vol. 98, no. 7, p. 075209, 2023. DOI: 10.1088/1402-4896/acd91f.
  • J. K. Madhukesh, et al., “Analysis of buoyancy assisting and opposing flows of colloidal mixture of titanium oxide, silver, and aluminium oxide nanoparticles with water due to exponentially stretchable surface,” Arab. J. Chem., vol. 16, no. 4, p. 104550, 2023. DOI: 10.1016/j.arabjc.2023.104550.
  • M. M. AlBaidani, N. K. Mishra, M. M. Alam, S. M. Eldin, A. A. AL-Zahrani, A. Akgul, “Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source,” Case Stud. Therm. Eng., vol. 44, p. 102825, 2023. DOI: 10.1016/j.csite.2023.102825.
  • H. A. Otman, Z. Mahmood, U. Khan, S. M. Eldin, B. M. Fadhl and B. M. Makhdoum, “Mathematical analysis of mixed convective stagnation point flow over extendable porous riga plate with aggregation and joule heating effects,” Heliyon, vol. 9, no. 6, p. e17538, 2023. DOI: 10.1016/j.heliyon.2023.e17538.
  • B. Ali, N. K. Mishra, K. Rafique, S. Jubair, Z. Mahmood and S. M. Eldin, “Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model,” Alexandria Eng. J, vol. 72, pp. 83–96, 2023. DOI: 10.1016/j.aej.2023.03.078.
  • S. Hansda and S. K. Pandit, “On the analysis of thermosolutal mixed convection with thermophoresis effects in a wavy porous cabinet,” Numer. Heat Transf. Part A Appl., pp. 1–24, 2023. DOI: 10.1080/10407782.2023.2227398.
  • D. Pal, G. Mandal and K. Vajravalu, “Mixed convection stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with internal heat generation/absorption,” Commun. Numer. Anal., vol. 2015, no. 1, pp. 30–50, 2015. DOI: 10.5899/2015/cna-00228.
  • D. Pal and G. Mandal, “Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink,” Int. J. Mech. Sci., vol. 126, pp. 308–318, 2017. DOI: 10.1016/j.ijmecsci.2016.12.023.
  • M. Waqas, et al., “Radiation effect on MHD three-dimensional stagnation-point flow comprising water-based graphene oxide nanofluid induced by a nonuniform heat source/sink over a horizontal plane surface,” Int. J. Mod. Phys. B, vol. 37, no. 15, p. 2350146, 2022. DOI: 10.1142/S0217979223501461.
  • A. M. Jyothi, R. N. Kumar, R. J. P. Gowda and B. C. Prasannakumara, “Significance of Stefan blowing effect on flow and heat transfer of Casson nanofluid over a moving thin needle,” Commun. Theor. Phys., vol. 73, no. 9, p. 095005, 2021. DOI: 10.1088/1572-9494/ac0a65.
  • K. Das, B. Sutradhar and P. K. Kundu, “Impact of nonlinear radiation on an unsteady magneto hybrid nanofluid flow over an upward/downward rotating disk,” Numer. Heat Transf. Part A Appl., pp. 1–18, 2023. DOI: 10.1080/10407782.2023.2228477.
  • Y. Yu, et al., “Exploration of 3D stagnation-point flow induced by nanofluid through a horizontal plane surface saturated in a porous medium with generalized slip effects,” Ain Shams Eng. J., vol. 14, no. 2, p. 101873, 2023. DOI: 10.1016/j.asej.2022.101873.
  • A. J. Chamkha, “MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects,” Appl. Math. Model, vol. 21, no. 10, pp. 603–609, 1997. DOI: 10.1016/S0307-904X(97)00084-X.
  • M. D. Alsulami, R. Naveen Kumar, R. J. Punith Gowda and B. C. Prasannakumara, “Analysis of heat transfer using Local thermal non‐equilibrium conditions for a non‐Newtonian fluid flow containing Ti6Al4V and AA7075 nanoparticles in a porous media,” ZAMM‐Journal Appl. Math. Mech. für Angew. Math. und Mech., vol: 103, p. e202100360, 2022.
  • F. Wang, et al., “Heat and mass transfer of Ag − H2O nano-thin film flowing over a porous medium: A modified Buongiorno’s model,” Chin. J. Phys., vol. 84, pp. 330-342, 2023.
  • A. Jamaludin, R. Nazar, K. Naganthran and I. Pop, “Mixed convection hybrid nanofluid flow over an exponentially accelerating surface in a porous media,” Neural Comput. Appl., vol. 33, no. 22, pp. 15719–15729, 2021. DOI: 10.1007/s00521-021-06191-4.
  • M. Asadullah, U. Khan, N. Ahmed, S. T. Mohyud-Din, “Analytical and numerical investigation of thermal radiation effects on flow of viscous incompressible fluid with stretchable convergent/divergent channels,” J. Mol. Liq., vol. 224, pp. 768–775, 2016. DOI: 10.1016/j.molliq.2016.10.073.
  • Z. Mahmood and U. Khan, “Nanoparticles aggregation effects on unsteady stagnation point flow of hydrogen oxide-based nanofluids,” Eur. Phys. J. Plus, vol. 137, no. 6, pp. 1–28, 2022. DOI: 10.1140/epjp/s13360-022-02917-y.
  • Z. Mahmood, S. E. Alhazmi, A. Alhowaity, R. Marzouki, N. Al-Ansari and U. Khan, “MHD mixed convective stagnation point flow of nanofluid past a permeable stretching sheet with nanoparticles aggregation and thermal stratification,” Sci. Rep., vol. 12, no. 1, p. 16020, 2022. DOI: 10.1038/s41598-022-20074-1.
  • J. Chen, C. Zhao and B. Wang, “Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: An experimental and theoretical study,” Int. J. Heat Mass Transf., vol. 154, pp. 119690, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119690.
  • I. Waini, A. Ishak and I. Pop, “Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid,” Alexandria Eng. J, vol. 59, no. 3, pp. 1881–1891, 2020. DOI: 10.1016/j.aej.2020.05.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.