61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of acoustic vibration promotes heat transfer of high-viscosity fluid in a container

, &
Received 26 Jun 2023, Accepted 24 Nov 2023, Published online: 06 Dec 2023

References

  • M. Rinaldi, M. Maiavasi, M. Cordioli, and D. Barbanti, “Investigation of influence of container geometry and starch concentration on thermal treated in-package food models by means of Computational Fluid Dynamics (CFD),” Food Bioprod. Process, vol. 108, pp. 1–11, 2018. DOI: 10.1016/j.fbp.2017.12.003.
  • L. Xie, Q. A. Wang, X. J. Luo, and Z. H. Luo, “CFD simulation of the particle dispersion behavior and mass transfer-reaction kinetics in non-newton fluid with high viscosity,” Int. J. Chem. React. Eng., vol. 17, no. 7, pp. 20180293, 2019. DOI: 10.1515/ijcre-2018-0293.
  • L. Dong, et al., “Mesoporous carbon hollow spheres encapsulated phase change material for efficient emulsification of high-viscosity oil,” J. Hazard Mater., vol. 451, pp. 131112, 2023. DOI: 10.1016/j.jhazmat.2023.131112.
  • S. Salari and S. M. Jafari, “Application of nanofluids for thermal processing of food products,” Trends Food Sci. Technol., vol. 97, pp. 100–113, 2020. DOI: 10.1016/j.tifs.2020.01.004.
  • M. Eesa and M. Barigou, “CFD simulation of transverse vibration effects on radial temperature profile and thermal entrance length in laminar flow,” Aiche J, vol. 57, no. 1, pp. 51–56, 2011 2011. DOI: 10.1002/aic.12243.
  • A. Ahmed, E. Wright, F. Abdel-Aziz, and Y. Yan, “Numerical investigation of heat transfer and flow characteristics of a double-wall cooling structure: reverse circular jet impingement,” Appl. Therm. Eng., vol. 189, pp. 116720, 2021. DOI: 10.1016/j.applthermaleng.2021.116720.
  • W. Zhou, L. Yuan, X. Wen, Y. Liu, and D. Peng, “Enhanced impingement cooling of a circular jet using a piezoelectric fan,” Appl. Therm. Eng, vol. 160, pp. 114067, 2019. DOI: 10.1016/j.applthermaleng.2019.114067.
  • B. Ren, D. Chen, H. Wang, M. Long, and Z. Han, “Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring,” Ironmak. Steelmak, vol. 42, no. 6, pp. 401–408, 2015. DOI: 10.1179/1743281214Y.0000000240.
  • P. Singh, “Ultrasonic vibration-assisted superior thermal transport,” Int. J. Heat Mass Transf., vol. 213, pp. 124366, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124366.
  • A. P. Singh, P. P. Yen, H. S. Ramaswamy, and S. Anika, “Recent advances in agitation thermal processing,” Clin. Microbiol. Newslett., vol. 37, no. 4, pp. 33, 2015. DOI: 10.1016/j.clinmicnews.2015.01.008.
  • M. Ozdemir and U. Durmaz, “An approach to obtain the heat transfer coefficient of aqueous sucrose solutions in agitated boiling vessels,” Therm Sci., vol. 19, no. 3, pp. 1025–1036, 2015. DOI: 10.2298/TSCI130111143O.
  • C. Hartmanshenn, et al., “Heat transfer of dry granular materials in a bladed mixer: effect of thermal properties and agitation rate,” Aiche. J., vol. 66, no. 4, pp. e16861, 2020. DOI: 10.1002/aic.16861.
  • E. Rajasekaran, B. Kumar, R. Muruganandhan, S. V. Raman, and G. N. Devi, “CFD simulation of convective heat transfer in vessel with mechanical agitation for milk,” J. Food Sci. Technol., vol. 57, no. 10, pp. 3667–3676, 2020. DOI: 10.1007/s13197-020-04399-1.
  • A. Mishra, I. Singhal, and R. Singhal, “Numerical analysis heat transfer enhancement in round corrugated channels using nano-fluids,” Numer. Heat Transfer. Part A, Appl., Jun. 2023. DOI: 10.1080/10407782.2023.2224935.
  • S. U. Yang, L. Quanhu, C. Song, L. Zhilong, and Y. Zhanwei, “Numerical simulation of material mixing process with no-propeller drum,” Chem. Industr. Engin. Progress, vol. 38, no. z1, pp. 59–63, 2019. DOI: 10.16085/j.issn.1000-6613.2019-0938.
  • X. Guo, B. Wang, J. Wu, K. L. Chong, and Q. Zhou, “Turbulent vertical convection under vertical vibration,” Phys. Fluids, vol. 34, no. 5, pp. 55106, 2022. DOI: 10.1063/5.0090250.
  • J. Shen and J. Wang, “Review of heat transfer enhancement by vibration research results of domestic and abroad,” APPl. Chem. Industry, vol. 44, no. 7, pp. 1338–1345, 2015.
  • R. Lemlich, “Effect of vibration on natural convective heat transfer,” Ind. Eng. Chem., vol. 47, no. 6, pp. 1175–1180, 1955. DOI: 10.1021/ie50546a024.
  • J. A. Scanlan, "Effects of Normal Surface Vibration on Laminar Forced Convective Heat Transfer," Ph. D. dissertation, Dept. ME., Northwestern University, U. S., 1957.
  • J. Y. Yu, et al., “Numerical simulation and field synergy analysis of flow and heat transfer in a vibratory tube,” AMR, vol. 516–517, pp. 949–953, 2012. DOI: 10.4028/www.scientific.net/AMR.516-517.949.
  • S. K. Mishra, H. Chandra, and A. Arora, “Effect of velocity and rheology of nanofluid on heat transfer of laminar vibrational flow through a pipe under constant heat flux,” Int. Nano Lett., vol. 9, no. 3, pp. 245–256, 2019. DOI: 10.1007/s40089-019-0276-4.
  • S. K. Mishra, A. Arora, Y. Kumar, M. Sao, and H. S. Chandra, “CFD study of heat transfer effect on nanofluid of Newtonian and non-Newtonian type under vibration,” Chem. Prod. Process Model, vol. 16, no. 4, pp. 251–260, 2021. DOI: 10.1515/cppm-2020-0027.
  • Y. L. Zhou and H. Chang, “Effect of heaving motion on two-phase flow in horizontal channel: flow and heat transfer characteristics,” Int. J. Therm. Sci., vol. 145, pp. 106044, 2019. DOI: 10.1016/j.ijthermalsci.2019.106044.
  • S. Hou, et al., “Impact of vibration on heat transfer and flow properties of heat exchange surfaces,” Numer. Heat Transfer. Part A, Appl., vol. 84, no. 6, pp. 529–549, 2022. DOI: 10.1080/10407782.2022.2143973.
  • A. H. D. K. Rasangika, M. S. Nasif, W. Pao, and R. Al-Waked, “Numerical investigation of the effect of square and sinusoidal waves vibration parameters on heat sink forced convective heat transfer enhancement,” APPl. Sci., vol. 12, no. 10, pp. 4911, 2022. DOI: 10.3390/app12104911.
  • A. Mitsuishi, et al., “Direct numerical simulation of convective heat transfer in a pipe with transverse vibration,” Int. J. Heat Mass Transf, vol. 148, pp. 119048, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119048.
  • B. K. Khudhair, A. M. Saleh, and A. L. Ekaid, “Analysis of influence of vertical vibration on natural heat convection coefficients from horizontal concentric and eccentric annulus,” JST, vol. 31, no. 3, pp. 1555–1586, 2023. DOI: 10.47836/pjst.31.3.24.
  • A. Klaczak, “Report from experiments on heat transfer by forced vibrations of exchangers,” Heat Mass Transf, vol. 32, no. 6, pp. 477–480, 1997. DOI: 10.1007/s002310050148.
  • Y. Yang, J. Mao, F. Wang, and X. Han, “Unsteady analysis of jet impingement under vibration conditions,” Chin. J. Aeronaut., vol. 35, no. 5, pp. 291–308, 2022. DOI: 10.1016/j.cja.2021.09.004.
  • T. P. Singh, A. Kumar, and A. K. Satapathy, “Numerical study to enhance the heat transfer using sinusoidal wavy surface for turbulent wall jet,” Numer. Heat Transfer. Part A, Appl., vol. 77, no. 2, pp. 179–198, 2020. DOI: 10.1080/10407782.2019.1688026.
  • A. Menbari and K. Hashemnia, “Influence of vibration characteristics on temperature uniformity of particles during heating processes in a vibrationally fluidized bed,” Powder Technol., vol. 396, pp. 596–614, 2022. DOI: 10.1016/j.powtec.2021.11.018.
  • D. M. Liu and P. Z. Lin, “Interface instabilities in Faraday waves of two-layer liquids with free surface,” J. Fluid Mech., vol. 941, pp. A33, 2022. DOI: 10.1017/jfm.2022.259.
  • S. C. Zhao, M. Dietzel, and S. Hardt, “Faraday instability of a liquid layer on a lubrication film,” J. Fluid Mech., vol. 879, pp. 422–447, 2019. DOI: 10.1017/jfm.2019.684.
  • Z. Q. Liu and H. X. Feng, “Experimental study on the relation between glycerol’s viscosity coefficient and temperature,” J. Yanan Univ. (Natural Science Edition), vol. 26, no. 4, pp. 35–37, 2007. DOI: 10.3969/j.issn.1004-602X.2007.04.012.
  • S. Tian and M. Barigou, “An improved vibration technique for enhancing temperature uniformity and heat transfer in viscous fluid flow,” Chem. Eng. Sci, vol. 123, pp. 609–619, 2015. DOI: 10.1016/j.ces.2014.11.029.
  • W. S, Z. G and Y. L, “Research on ship motion characteristics in a cross sea based on computational fluid dynamics and potential flow theory,” Engineer. Appl. Computational Fluid, vol. 17, no. 1, pp. 2164618, 2023. DOI: 10.1080/19942060.2022.2164618.
  • Z. Y. Guo, W. Q. Tao, and R. K. Shah, “The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer,” Int. J. Heat Mass Transf, vol. 48, no. 9, pp. 1797–1807, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.11.007.
  • W. Q. Tao, Y. L. He, Q. W. Wang, Z. G. Qu, and F. Q. Song, “A unified analysis on enhancing single phase convective heat transfer with field synergy principle,” Int. J. Heat Mass Transf, vol. 45, no. 24, pp. 4871–4879, 2002. DOI: 10.1016/S0017-9310(02)00173-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.