66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploration of nonlinear radiative heat energy on Buongiorno modeled nano liquid toward an inclined porous plate with heat source and variable chemical reaction

, ORCID Icon, ORCID Icon, ORCID Icon, &
Received 08 May 2023, Accepted 18 Nov 2023, Published online: 11 Dec 2023

References

  • S. U. S. Choi and A. Jeffrey, “Eastman,” in Enhancing Thermal Conductivity of Fluids with Nanoparticles, No. ANL/MSD/CP-84938, CONF-951135-29. Lemont, IL: Argonne National Lab, 1995.
  • M. Farooq, M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi and M. I. Khan, “MHD stagnation point flow of viscoelastic nanofluid with nonlinear radiation effects,” J. Mol. Liq., vol. 221, pp. 1097–1103, 2016. DOI: 10.1016/j.molliq.2016.06.077.
  • F. Wang et al. “The effects of nanoparticle aggregation and radiation on the flow of nanofluid between the gap of a disk and cone,” Case Stud. Therm. Eng., vol. 33, pp. 101930, 2022. DOI: 10.1016/j.csite.2022.101930.
  • R. J. P. Gowda, R. N. Kumar, A. Rauf, B. C. Prasannakumara and S. A. Shehzad, “Magnetized flow of sutterby nanofluid through Cattaneo-Christov theory of heat diffusion and Stefan blowing condition,” Appl. Nanosci., vol. 13, no. 1, pp. 585–594, 2023. DOI: 10.1007/s13204-021-01863-y.
  • R. N. Kumar, “Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model,” Pramana – J. Phys., vol. 95, pp. 180, 2021. DOI: 10.1007/s12043-021-02212-y.
  • R. N. Kumar et al., “Inspection of convective heat transfer and KKL correlation for simulation of nanofluid flow over a curved stretching sheet,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105445, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105445.
  • R. S. V. Kumar, A. Alhadhrami, R. J. P. Gowda, R. N. Kumar and B. C. Prasannakumara, “Exploration of Arrhenius activation energy on hybrid nanofluid flow over a curved stretchable surface,” ZAMM J. Appl. Mathe. Mech. Zeitschr. Angew. Mathe. Mech., vol. 101, pp. e202100035, 2021. DOI: 10.1002/zamm.202100035.
  • R. J. P. Gowda et al., “Slip flow of Casson–Maxwell nanofluid confined through stretchable disks,” Indian J. Phys., vol. 96, no. 7, pp. 2041–2049, 2022. DOI: 10.1007/s12648-021-02153-7.
  • R. N. Kumar, F. Gamaoun, A. Abdulrahman, J. S. Chohan and R. J. P. Gowda, “Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: a comparative study,” Int. J. Mod. Phys. B, vol. 36, no. 25, pp. 2250170, 2022. DOI: 10.1142/S0217979222501703.
  • Q. H. Shi et al., “Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy,” Sci. Rep., vol. 11, no. 1, pp. 16030, 2021. DOI: 10.1038/s41598-021-95587-2.
  • R. J. P. Gowda et al., “Dynamics of nanoparticle diameter and interfacial layer on flow of non-Newtonian (Jeffrey) nanofluid over a convective curved stretching sheet,” Int. J. Mod. Phys. B, vol. 36, no. 31, pp. 2250224, 2022. DOI: 10.1142/S0217979222502241.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Tranf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • S. K. Das, S. U. S. Choi, W. Yu and T. Pradeep, Nanofluids: Science and Technology. Hoboken, NJ: Willey, 2007. DOI: 10.1002/9780470180693.
  • M. Usman et al., “Differential transform method for unsteady nanofluid flow and heat transfer,” Alex. Eng. J., vol. 57, no. 3, pp. 1867–1875, 2017. DOI: 10.1016/j.aej.2017.03.052.
  • N. A. M. Noor, S. Shafie and M. A. Admon, “Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium,” PLoS One, vol. 16, no. 5, pp. e0250402, 2021. DOI: 10.1371/journal.pone.0250402.
  • A. Raees, M. R. U. Haq and M. Mansoor, “Modeling and simulations of Buongiorno’s model for nanofluid in a microchannel with electro-osmotic effects and an exothermal chemical reaction,” Nanomaters, vol. 11, no. 4, pp. 905, 2021. DOI: 10.3390/nano11040905.
  • H. Vaidya et al., “Buongiorno model for MHD nanofluid flow between rotating parallel plates in the presence of variable liquid properties,” J. Nanofluids, vol. 8, no. 2, pp. 399–406, 2019. DOI: 10.1166/jon.2019.1594.
  • S. E. Ahmed and Z. Z. Rashed, “MHD natural convection in a heat generating porous medium-filled wavy enclosures using Buongiorno’s nanofluid model,” Case Stud. Therm. Eng., vol. 14, pp. 100430, 2019. DOI: 10.1016/j.csite.2019.100430.
  • R. M. Muntazir, M. Mushtaq, S. Shahzadi and K. Jabeen, “MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 236, no. 1, pp. 137–152, 2021. DOI: 10.1177/09544062211023094.
  • H. Upreti and M. Kumar, “Influence of nonlinear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle,” MMMS, vol. 16, no. 1, pp. 208–224, 2020. DOI: 10.1108/MMMS-05-2019-0097.
  • J. Wasim, “Numerical investigation of MHD impact on Maxwell nanofluid,” Int. Commun. Heat Mass Transf., vol. 120, pp. 104973, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104973.
  • J. Zhu, Y. Xu and X. Han, “A non-Newtonian magnetohydrodynamics (MHD) nanofluid flow and heat transfer with nonlinear slip and temperature jump,” Mathematics, vol. 7, no. 12, pp. 1199, 2019. DOI: 10.3390/math7121199.
  • G. R. Rajput, J. S. V. R. Krishnaprasad and M. G. Timol, “Group theoretic technique for MHD forced convection laminar boundary layer flow of nanofluid over a moving surface,” Int. J. Heat Technol., vol. 34, no. 1, pp. 1–6, 2016. DOI: 10.18280/ijht.340101.
  • M. D. Shamshuddin and M. R. Eid, “Magnetized nanofluid flow of ferromagnetic nanoparticles from parallel stretchable rotating disk with variable viscosity and thermal conductivity,” Chin J. Phys., vol. 74, pp. 20–37, 2021. DOI: 10.1016/j.cjph.2021.07.038.
  • A. Izadi, M. Siavashi, H. Rasam and Q. Xiong, “MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling,” Appl. Therm. Eng., vol. 168, pp. 114843, 2020. DOI: 10.1016/j.applthermaleng.2019.114843.
  • B. Souayeh et al., “Comparative analysis on nonlinear radiative heat transfer on MHD Casson nanofluid past a thin needle,” J. Mol. Liq., vol. 284, pp. 163–174, 2019. DOI: 10.1016/j.molliq.2019.03.151.
  • S. Z. Abbas et al., “Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy,” Comput. Methods Prog. Biomed., vol. 190, pp. 105362, 2020. DOI: 10.1016/j.cmpb.2020.105362.
  • A. Shahid, H. L. Huang, C. M. Khalique and M. M. Bhatti, “Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2585–2596, 2021. DOI: 10.1007/s10973-020-10295-9.
  • J. Raza, F. M. Oudina, P. Ram and S. Sharma, “MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation,” Defect. Diffus. Forum, vol. 401, pp. 92–106, 2020. DOI: 10.4028/www.scientific.net/DDF.401.92.
  • J. C. Umavathi et al., “Magnetohydrodynamic squeezing Casson nanofluid flow between parallel convectively heated disks,” Int. J. Mod. Phys. B, vol. 37, no. 04, pp. 2350031, 2023. DOI: 10.1142/S0217979223500315.
  • B. C. Prasannakumara and R. J. P. Gowda, “Heat and mass transfer analysis of radiative fluid flow under the influence of uniform horizontal magnetic field and thermophoretic particle deposition,” Waves. Rand. Comp. Med., pp. 1–12, 2022. DOI: 10.1080/17455030.2022.2096943.
  • K. Sarada et al., “Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model,” Case. Stud. Therm. Eng., vol. 38, pp. 102332, 2022. DOI: 10.1016/j.csite.2022.102332.
  • T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, “Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet,” J. Mol. Liq., vol. 223, pp. 853–860, 2016. DOI: 10.1016/j.molliq.2016.09.007.
  • W. Ibrahim and M. Negera, “MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction,” J. Egypt Math. Soc., vol. 28, no. 1, pp. 1–28, 2020. DOI: 10.1186/s42787-019-0057-2.
  • S. Jena, S. R. Mishra and G. C. Dash, “Chemical reaction effect on MHD Jeffery fluid flow over a stretching sheet through porous media with heat generation/absorption,” Int. J. Appl. Comput. Math., vol. 3, no. 2, pp. 1225–1238, 2017. DOI: 10.1007/s40819-016-0173-8.
  • P. P. Humane, V. S. Patil and A. B. Patil, “Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson–Williamson nanofluid over a porous stretching surface,” Proc. Inst. Mech. Eng., vol. 235, no. 6, pp. 2008–2018, 2021. DOI: 10.1177/09544089211025376.
  • W. A. Khan and I. Pop, “Effect of Homogeneous-heterogeneous reactions on the Visco-elastic fluid towards a stretching sheet,” ASME. J. Heat. Transf., vol. 134, no. 6, pp. 064506, 2012. DOI: 10.1115/1.4006016.
  • D. Gopal et al., “Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation,” Alex. Eng. J., vol. 60, no. 1, pp. 1861–1871, 2021. DOI: 10.1016/j.aej.2020.11.034.
  • G. Sarojamma, K. Sreelakshmi, P. K. Jyothi and P. V. Narayana, “Influence of homogeneous and heterogeneous chemical reactions and variable thermal conductivity on the MHD Maxwell fluid flow due to a surface of variable thickness,” Defect. Diffus. Forum, vol. 401, pp. 148–163, 2020. DOI: 10.4028/www.scientific.net/DDF.401.148.
  • R. Kumar, R. Kumar, M. Sheikholeslami and A. J. Chamkha, “Irreversibility analysis of the three-dimensional flow of carbon nanotubes due to nonlinear thermal radiation and quartic chemical reactions,” J. Mol. Liq., vol. 274, pp. 379–392, 2019. DOI: 10.1016/j.molliq.2018.10.149.
  • T. Poornima, P. Sreenivasulu, N. B. Reddy and S. R. Gunakala, “The effects of homo-/heterogeneous chemical reactions on Williamson MHD stagnation point slip flow: a numerical study,” in Applied Mathematics and Scientific Computing. Berlin, Germany: Springer US, 2019, pp. 157–165. 10.1007/978-3-030-01123-9_17.
  • K. A. Kumar, J. R. Reddy, V. Sugunamma and N. Sandeep, “MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink,” Int. J. Fluid Mech. Res., vol. 46, no. 5, pp. 407–425, 2019. DOI: 10.1615/InterJFluidMechRes.2018025940.
  • M. Shahzad, M. Ali, F. Sultan, W. A. Khan and Z. Hussain, “Theoretical analysis of cross-nanofluid flow with nonlinear radiation and magnetohydrodynamics,” Indian J. Phys., vol. 95, no. 3, pp. 481–488, 2021. DOI: 10.1007/s12648-019-01669-3.
  • Y. X. Li et al., “Numerical treatment of time dependent magnetohydrodynamic nanofluid flow of mass and heat transport subject to chemical reaction and heat source,” Alex. Eng. J., vol. 61, no. 3, pp. 2484–2491, 2022. DOI: 10.1016/j.aej.2021.07.030.
  • A. Anjum, S. Masood, M. Farooq, N. Rafiq and M. Y. Malik, “Investigation of binary chemical reaction in magnetohydrodynamic nanofluid flow with double stratification,” Adv. Mech. Eng., vol. 13, no. 5, pp. 168781402110162, 2021. DOI: 10.1177/16878140211016264.
  • Z. Uddin and M. Kumar, “Radiation effect on unsteady MHD heat and mass transfer flow on a moving inclined porous heated plate in presence of chemical reaction,” Int. J. Mathem. Mod., Sim. Appl., vol. 3, no. 2, pp. 155–163, 2010.
  • C. Sulochana, G. P. Ashwinkumar and N. Sandeep, “Effect of frictional heating on mixed convection flow of chemically reacting radiative Casson nanofluid over an inclined porous plate,” Alex. Eng. J., vol. 57, no. 4, pp. 2573–2584, 2018. DOI: 10.1016/j.aej.2017.08.006.
  • Y. H. Krishna, M. V. M. Ramana, N. L. Bhikshu and G. V. Ramana, “Effects of radiation and chemical reaction on MHD flow past an oscillating inclined porous plate with variable temperature and mass diffusion,” Int. J. Chem. Sci., vol. 15, no. 3, pp. 149, 2017. DOI: 10.3329/jname.v16i2.29526.
  • M. D. Shamshuddin and T. Thumma, “Numerical study of a dissipative micropolar fluid flow past an inclined porous plate with heat source/sink,” Propuls. Power. Res., vol. 8, no. 1, pp. 56–68, 2019. DOI: 10.1016/j.jppr.2019.01.001.
  • P. S. Reddy, A. J. Chamkha and A. A. Mudhaf, “MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption,” Adv. Pow. Tech., vol. 28, no. 3, pp. 1008–1017, 2017. DOI: 10.1016/j.apt.2017.01.005.
  • D. H. Babu, S. S. Kumari and P. V. Narayana, “Chemical reaction and thermophoresis effects on MHD mixed convection flow over an inclined porous plate with variable suction,” Adv. Fluid. Dynam., pp. 723–735, 2021. DOI: 10.1007/978-981-15-4308-1_56.
  • M. Mustafa, A. Mushtaq, T. Hayat and B. Ahmad, “Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study,” PLoS One, vol. 9, no. 9, pp. e103946, 2014. DOI: 10.1371/journal.pone.013946.
  • P. S. Reddy and P. Sreedevi, “MHD boundary layer heat and mass transfer flow of nanofluid through porous media over inclined plate with chemical reaction,” MMMS, vol. 17, no. 2, pp. 317–336, 2021. DOI: 10.1108/MMMS-03-2020-0044.
  • M. D. Shamshuddin, F. Mabood and O. A. Beg, “Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects,” Int. J. Mod. Simul., vol. 42, no. 5, pp. 782–796, 2022. DOI: 10.1080/02286203.2021.1977531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.