83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Radiative and dissipative MHD Eyring–Powell nanofluid bioconvective flow through peristaltic waves in the presence of bilateral chemical reaction with Arrhenius activation energy: Entropy optimization

ORCID Icon, ORCID Icon, , , &
Received 12 Sep 2023, Accepted 02 Dec 2023, Published online: 15 Dec 2023

References

  • T. W. Latham, “Fluid motion in a peristaltic pump,” M.Sc. thesis, MIT, Cambridge, MA, 1966.
  • T. Hayat, N. Ali and S. Asgher, “Hall effects on peristaltic flow of a Maxwell fluid in a porous medium,” Phys. Lett. A, vol. 363, no. 5–6, pp. 397–403, Apr. 2007. DOI: 10.1016/j.physleta.2006.10.104.
  • T. Hayat and N. Ali, “A mathematical description of peristaltic hydromagnetic flow in a tube,” Appl. Math. Comput., vol. 188, no. 2, pp. 1491–1502, May 2007. DOI: 10.1016/j.amc.2006.11.035.
  • Y. Wang, T. Hayat and K. Huttler, “Peristaltic flow of a Johnson Segalman fluid through a deformable tube,” Theor. Comput. Fluid Dyn., vol. 21, no. 5, pp. 369–380, Jul. 2007. DOI: 10.1007/s00162-007-0054-1.
  • N. Ali, T. Hayat and M. Sajid, “Peristaltic flow of a couple stress fluid in an asymmetric channel,” Biorheology, vol. 44, pp. 125–138, Apr. 2007. https://content.iospress.com/articles/biorheology/bir453
  • S. Srinivas and M. Kothandapni, “Peristaltic transport in an asymmetric channel with heat transfer – A note,” Int. Commun. Heat Mass Transf., vol. 35, no. 4, pp. 514–522, Apr. 2008. DOI: 10.1016/j.icheatmasstransfer.2007.08.011.
  • D. Tripathi, S. K. Pandey and S. Das, “Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel,” Appl. Math. Comput., vol. 215, no. 10, pp. 3645–3654, Jan. 2010. DOI: 10.1016/j.amc.2009.11.002.
  • F. M. Abbasi, T. Hayat, F. Alsaadi, A. M. Dobai and H. Gao, “MHD peristaltic transport of spherical and cylindrical magneto- nanoparticles suspended in water,” AIP Adv., vol. 5, no. 7, pp. 077104, Jul. 2015. DOI: 10.1063/1.4926368.
  • R. E. Powell and H. Eyring, “Mechanisms for the relaxation theory of viscosity,” Nature, vol. 154, no. 3909, pp. 427–428, Sep. 1944. DOI: 10.1038/154427a0.
  • Z. Nisar, T. Hayat, A. Alsaedi and B. Ahmad, “Significance of activation energy in radiative peristaltic transport of Eyring Powell nanofluid,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104655, Jul. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104655.
  • Y. Y. Liang, G. A. F. Weihs and D. F. Fletcher, “CFD study of the effect of unsteady slip velocity waveform on shear stress in membrane systems,” Chem. Eng. Sci., vol. 192, pp. 16–24, Dec. 2018. DOI: 10.1016/j.ces.2018.07.009.
  • A. Alsaedi, T. Hayat, S. Qayyum and R. Yaqoob, “Eyring–Powell nanofluid flow with nonlinear mixed convection: entropy generation minimization,” Comput. Methods Prog. Biomed., vol. 186, pp. 105183, Apr. 2020. DOI: 10.1016/j.cmpb.2019.105183.
  • U. M. Zahid, Y. Akbar and F. M. Abbasi, “Entropy generation analysis for peristaltically driven flow of hybrid nanofluid,” Chin. J. Phys., vol. 67, pp. 330–348, Oct. 2020. DOI: 10.1016/j.cjph.2020.07.009.
  • Y. Akbar and F. M. Abbasi, “Impact of variable viscosity on peristaltic motion with entropy generation,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104826, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104826.
  • T. Ambreen, A. Saleem and C. W. Park, “Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy Forchheimer–Brinkman model coupled with multiphase Eulerian model,” Appl. Therm. Eng., vol. 173, pp. 115231, Jun. 2020. DOI: 10.1016/j.applthermaleng.2020.115231.
  • S. A. Hussein, “Numerical simulation for peristaltic transport of radiative and dissipative MHD Prandtl nanofluid through the vertical asymmetric channel in the presence of double diffusion convection,” Numer. Heat Transf. B Fundament, Jul. 2023. DOI: 10.1080/10407790.2023.2235886.
  • S. A. Hussein, “Simulation and interpretation of MHD peristaltic transport of dissipated third grade nanofluid flow across asymmetric channel under the influences of rheological characteristics and inclined magnetic field as well as heat and mass convection,” Int. J. Model. Simul., Aug. 2023. DOI: 10.1080/02286203.2023.2240557.
  • S. A. Hussein, “Simulating and interpretation of MHD peristaltic transport of dissipated Eyring–Powell nanofluid flow through vertical divergent/nondivergent channel,” Numer. Heat Transf. A Appl., vol. 84, no. 10, pp. 1124–1148, Mar. 2023. DOI: 10.1080/10407782.2023.2171928.
  • S. A. Hussein, S. E. Ahmed and A. A. Arafa, “Numerical treatment of thermal and concentration convection along with induced magnetic field on peristaltic pumping of a magnetic six-constant Jeffrey nanofluid through a vertical divergent channel,” Numer. Heat Transf. A Appl., vol. 84, no. 8, pp. 877–904, Mar. 2023. DOI: 10.1080/10407782.2023.2165580.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Fluids Eng. Div., vol. 231, pp. 99–105, Oct. 1995.
  • N. Asokan, P. Gunnasegaran and V. V. Wanatasanappan, “Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles,” Therm. Sci. Eng. Prog., vol. 20, pp. 100727, Dec. 2020. DOI: 10.1016/j.tsep.2020.100727.
  • Y. Jiang, X. Zhou and Y. Wang, “Effect of nanoparticle shapes on nanofluid mixed forced and thermocapillary convection in minichannel,” Int. Commun. Heat Mass Transf., vol. 118, pp. . 884, Nov. 2020 DOI: 10.6/j.icheatmasstransfer.2020.104884.
  • H. Saadati, K. Hadad and A. Rabiee, “Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid,” Nucl. Eng. Technol., vol. 50, no. 5, pp. 639–647, Jun. 2018. DOI: 10.1016/j.net.2018.01.015.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • A. Razaq, T. Hayat, S. A. Khan and S. Momani, “ATSS model based upon applications of Cattaneo-Christov thermal analysis for entropy optimized ternary nanomaterial flow with homogeneous-heterogeneous chemical reactions,” Alex. Eng. J., vol. 79, pp. 390–401, Sep. 2023. DOI: 10.1016/j.aej.2023.08.013.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “Arrhenius activated energy impacts on irreversibility optimization due to unsteady stagnation point flow of radiative Casson nanofluids,” Eur. Phys. J. Plus, vol. 137, no. 11, pp. 1–14, Nov. 2022. DOI: 10.1140/epjp/s13360-022-03434-8.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “Dissipated-radiative compressible flow of nanofluids over unsmoothed inclined surfaces with variable properties,” Numer. Heat Transf. A Appl., vol. 84, no. 5, pp. 507–528, pp. 1–22, Nov. 2022. DOI: 10.1080/10407782.2022.2141389.
  • S. A. Hussein and N. T. Eldabe, “Peristaltic pumping of boron nitride-ethylene glycol nanofluid through a complex wavy micro-channel under the effect of induced magnetic field and double diffusive,” Sci. Rep., vol. 13, no. 1, pp. 2622, Feb. 2023. DOI: 10.1038/s41598-023-29301-9.
  • J. Madhukesh, G. Ramesh, B. Prasannakumara, S. Shehzad and F. Abbasi, “Bio-marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy,” Appl. Math. Mech.-Engl. Ed., vol. 42, no. 8, pp. 1191–1204, Jul. 2021. DOI: 10.1007/s10483-021-2753-7.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “Bioconvective flow of a variable properties hybrid nanofluid over a spinning disk with Arrhenius activation energy, soret and Dufour impacts,” Numer. Heat Transf. A Appl., Mar. 2023. DOI: 10.1080/10407782.2023.2193709.
  • M. Alsulami, M. Jayaprakash, J. Madhukesh, G. Sowmya and R. N. Kumar, “Bioconvection in radiative glauert wall jet flow of nanofluid: a buongiorno model,” Waves Random Complex Media, Oct. 2022. DOI: 10.1080/17455030.2022.2128224.
  • G. Ramesh, J. Madhukesh, B. Prasannakumara and G. Roopa, “Significance of aluminium alloys particle flow through a parallel plate with activation energy and chemical reaction,” J. Therm. Anal. Calorim., vol. 147, no. 12, pp. 6971–6981, Jul. 2021. DOI: 10.1007/s10973-021-10981-2.
  • S. E. Ahmed, Z. Raizah, A. A. Arafa and S. A. Hussein, “FEM treatments for MHD highly mixed convection flow within partially heated double-lid driven odd-shaped enclosures using ternary composition nanofluids,” Int. Commun. Heat Mass Transf., vol. 145, pp. 106854, Jun. 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106854.
  • B. Ali, A. Shafiq, A. Manan, A. Wakif and S. Hussain, “Bioconvection: significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation,” Mathe. Comput. Simulat., vol. 194, pp. 254–268, Apr. 2022. DOI: 10.1016/j.matcom.2021.11.019.
  • S. E. Ahmed, A. A. M. Arafa and S. A. Hussein, “A novel model of non-linear radiative Williamson nanofluid flow along a vertical wavy cone in the presence of gyrotactic microorganisms,” Int. J. Model. Simul, Feb. 2023. DOI: 10.1080/02286203.2023.2180023.
  • S. A. Khan, A. Razaq, A. Alsaedi and T. Hayat, “Modified thermal and solutal fluxes through convective flow of Reiner-Rivlin material,” Energy, vol. 283, pp. 128516, Nov. 2023. DOI: 10.1016/j.energy.2023.128516.
  • S. A. Khan, T. Hayat and A. Alsaedi, “Bioconvection entropy optimized flow of Reiner-Rivlin nanoliquid with motile microorganisms,” Alex. Eng. J., vol. 79, pp. 81–92, Sep. 2023. DOI: 10.1016/j.aej.2023.07.069.
  • J. Madhukesh, G. Ramesh, R. V. Kumar, B. Prasannakumara and M. K. Alaoui, “Computational study of chemical reaction and activation energy on the flow of fe3o4-go/water over a moving thin needle: theoretical aspects,” Comput. Theor. Chem., vol. 1202, pp. 113306, Aug. 2021. DOI: 10.1016/j.comptc.2021.113306.
  • J. K. Madhukesh et al., “Combined impact of Marangoni convection and thermophoretic particle deposition on chemically reactive transport of nanofluid flow over a stretching surface,” Nanotechnol. Rev., vol. 11, no. 1, pp. 2202–2214, Jun. 2022. DOI: 10.1515/ntrev-2022-0132.
  • P. Srilatha et al., “Effect of nanoparticle diameter in maxwell nanofluid flow with thermophoretic particle deposition,” Mathematics, vol. 11, no. 16, pp. 3501, Aug. 2023. DOI: 10.3390/math11163501.
  • G. K. Ramesh, J. Madhukesh, N. A. Shah and S.-J. Yook, “Flow of hybrid cnts past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition,” Alex. Eng. J., vol. 64, pp. 969–979, Feb. 2023. DOI: 10.1016/j.aej.2022.09.026.
  • A. Rauf, N. A. Shah, A. Mushtaq and T. Botmart, “Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet,” AIMS Mathematics, vol. 8, no. 1, pp. 164–193, Sep. 2023. DOI: 10.3934/math.2023008.
  • K. L. Hsiao, “To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method,” Energy, vol. 130, pp. 486–499, Jul. 2017. DOI: 10.1016/j.energy.2017.05.004.
  • M. I. Khan, S. Qayyum, T. Hayat, M. Waqas, M. I. Khan and A. Alsaedi, “Entropy generation minimization and binary chemical reaction with Arrhenius activation energy in MHD radiative flow of nanomaterial,” J. Mol. Liq., vol. 259, pp. 274–283, Jun. 2018. DOI: 10.1016/j.molliq.2018.03.049.
  • M. I. Khan, T. Hayat, M. I. Khan and A. Alsaedi, “Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid,” Int. Commun. Heat Mass Transf., vol. 91, pp. 216–224, Feb. 2018. DOI: 10.1016/j.icheatmasstransfer.2017.11.001.
  • S. Anuradha and M. Yegammai, “MHD radiative boundary layer flow of nanofluid past a vertical plate with effects of binary chemical reaction and activation energy,” Glob. J. Pure Appl. Math., vol. 13, pp. 6377–6392, Sep. 2017. https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=MHD+radiative+boundary+layer+flow+of+nanofluid+past+a+vertical+plate+with+effects+of+binary+chemical+reaction+and+activation+energy&btnG=
  • A. Hamid, M. Khan, and A. Hashim, “Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid”, J. Mol. Liq., vol. 262, pp. 435–442, Jul. 2018. DOI: 10.1016/j.molliq.2018.04.095.
  • A. A. Khan, F. Masood, R. Ellahi and M. M. Bhatti, “Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects,” J. Mol. Liq., vol. 258, pp. 186–195, May 2018. DOI: 10.1016/j.molliq.2018.02.115.
  • A. Zeeshan, N. Shehzad and R. Ellahi, “Analysis of activation energy in Couette- Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions,” Results Phys., vol. 8, pp. 502–512, Mar. 2018. DOI: 10.1016/j.rinp.2017.12.024.
  • A. Alsaedi, F. E. Alsaadi, S. Ali and T. Hayat, “Stagnation point flow of Burgers’ fluid and mass transfer with chemical reaction and porosity,” J. Mech., vol. 29, no. 3, pp. 453–460, Sep. 2013. DOI: 10.1017/jmech.2013.20.
  • F. M. Abbasi, T. Hayat and B. Ahmad, “Peristalsis of silver-water nanofluid in the presence of hall and Ohmic heating effects: applications in drug delivery,” J. Mol. Liq., vol. 207, pp. 248–255, Jul. 2015. DOI: 10.1016/j.molliq.2015.03.042.
  • M. M. Bhatti, A. Zeeshan and R. Ellahi, “Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism,” Microvasc. Res., vol. 110, pp. 32–42, Mar. 2017. DOI: 10.1016/j.mvr.2016.11.007.
  • S. E. Ahmed, A. A. Arafa, S. A. Hussein and Z. A. S. Raizah, “Novel treatments for the bioconvective radiative Ellis nanofluids wedge flow with viscous dissipation and an activation energy,” Case Stud. Therm. Eng., vol. 40, pp. 102510, Dec. 2022. DOI: 10.1016/j.csite.2022.102510.
  • A. A. M. Arafa, Z. Z. Rashed and S. E. Ahmed, “Radiative MHD bioconvective nanofluid flow due to gyrotactic microorganisms using Atangana-Baleanu Caputo fractional derivative,” Phys. Scr., vol. 96, no. 5, pp. 055211, Mar. 2021. DOI: 10.1088/1402-4896/abe82d.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “MHD Ellis nanofluids flow around rotating cone in the presence of motile oxytactic microorganisms,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106056, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106056.
  • S. A. Hussein, S. E. Ahmed and A. A. Arafa, “Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties,” ZAMM-J. Appl. Math. Mech.s/Zeitschrift F€ur Angew. Mathe. Mech., vol. 103, no. 1, pp. e202200284, Oct. 2022. DOI: 10.1002/zamm.202200284.
  • N. S. Khan, T. Gul, M. A. Khan, E. Bonyah and S. Islam, “Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms,” Results Phys., vol. 7, pp. 4033–4049, Nov. 2017. DOI: 10.1016/j.rinp.2017.10.017.
  • Z. Palwasha, S. Islam, N. S. Khan and H. Ayaz, “Non-Newtonian nanoliquids thin-film flow through a porous medium with magnetotactic microorganisms,” Appl. Nanosci., vol. 8, no. 6, pp. 1523–1544, Jul. 2018. DOI: 10.1007/s13204-018-0834-5.
  • S. Zuhra, N. S. Khan and S. Islam, “Magnetohydrodynamic second grade nanofluid flow containing nanoparticles and gyrotactic microorganisms,” Comp. Appl. Math., vol. 37, no. 5, pp. 6332–6358, Aug. 2018. DOI: 10.1007/s40314-018-0683-6.
  • N. S. Khan, “Bioconvection in second grade nanofluid flow containing nanoparticles and gyrotactic microorganisms,” Braz. J. Phys., vol. 48, no. 3, pp. 227–241, Apr. 2018. DOI: 10.1007/s13538-018-0567-7.
  • H. A. Alzahrani, A. Alsaiari, J. Madhukesh, R. Naveen Kumar and B. Prasanna, “Effect of thermal radiation on heat transfer in plane wall jet flow of casson nanofluid with suction subject to a slip boundary condition,” Waves Random Complex Media, Feb. 2022. DOI: 10.1080/17455030.2022.2030502.
  • F. Ishtiaq, R. Ellahi, M. M. Bhatti and S. Z. Alamri, “Insight in thermally radiative cilia-driven flow of electrically conducting non-Newtonian Jeffrey fluid under the influence of induced magnetic field,” Mathematics, vol. 10, no. 12, pp. 2007, Jun. 2022. DOI: 10.3390/math10122007.
  • B. Ahmed, T. Hayat, F. Abbasi and A. Alsaedi, “Mixed convection and thermal radiation effect on mhd peristaltic motion of Powell Eyring nanofluid,” Int. Commun. Heat Mass. Transf., vol. 126, pp. 105320, Jul. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105320.
  • A. A. M. Arafa, S. E. Ahmed and M. M. Allan, “Peristaltic flow of non-homogeneous nanofluids through variable porosity and heat generating porous media with viscous dissipation: entropy analyses,” Case Stud. Therm. Eng., vol. 32, pp. 101882, Apr. 2022. DOI: 10.1016/j.csite.2022.101882.
  • S. Eswaramoorthi, K. Loganathan, M. Faisal, T. Botmart and N. A. Shah, “Analytical and numerical investigation of darcy-forchheimer flow of a nonlinear-radiative non-newtonian fluid over a Riga plate with entropy optimization,” Ain Shams Eng. J., vol. 14, no. 3, pp. 101887, Apr. 2023. DOI: 10.1016/j.asej.2022.101887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.